
MASS TRANSPORT IN, THROUGH, FROM FOOD PACKAGING

PERMEATION, MIGRATION, DIFFUSION, SORPTION, REGULATION, RISK ASSESSMENT/MANAGEMENT

olivier.vitrac@agroparistech.fr

ITNESS

http://fitness.agroparistech.fr

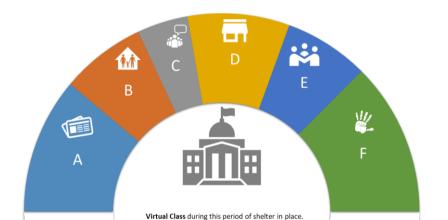
Co-funded by the Erasmus+ Programme of the European Union

Online lectures

Online lectures Common modules

- 1. What is food packaging
 - 1.1 Panorama of food packaging
 - 1.2 Packaging materials and shaping process
 - 1.3 Basic legal framework
- 2. Properties of food packaging materials
- 2.1 Thermal, mechanical and barrier properties
- 3. Packaging and food preservation
 - 3.1 Common physical chemical factors affecting food stability
 - 3.2 Food packaging and shelf life

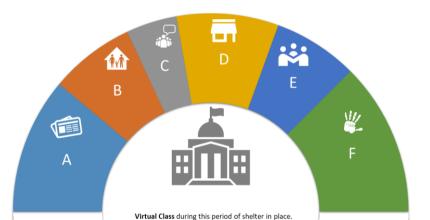
author: undef


part 1/1 references extra casestudies howto solutions Session 4. Mass transfer in food packaging - Unit 4.2. Migration modeling in m onomaterial s

4.3 Modelling for multi-materials, multi-steps process

Migration modeling for multi-materials, multi-steps process, reusable materials - SPECIALIZED TRAININ MODULES

author: undef


part 1/1 references extra casestudies howto solutions

Welcome to FITNess

Fitness stands for **Food packaging open courseware for**higher education and staff of companies

All lectures, interactive contents and Quizz are provided "AS IS". The content (85 lectures from Common to Specialized Modules) is under development and may contain inconsitencies and inaccuracies. It will be updated regularly.

THIS LECTURE

https://fitness.agroparistech.fr/fitness/external/UniLaSalle/

L'emballage en 1964 - archive INA

YOUR PRACTICAL WORK (Specialized/S4/U4.2)

https://fitness.agroparistech.fr/fitness/lectures/html/specialized/S4/U4.2/casestudies/index.html

Related lectures

Introductive case Studies

Case-study 1: Packaged sandwich - calculation of migration Troubleshooting - How to activate Flash

Introduction

Migration modeling is authorized as an alternative to complex and time-consuming migration testing. It is looked with envy outside EU and for non-food applications. The presented examples illustrate the principles for monolayer

Legal texts

Migration modeling has been introduced early in article 14 of EU directive 2002/72/EC:

"(14) For certain types of plastics the availability of generally recognised diffusion models based on experimental data allows the estimation of the migration level of a substance under certain conditions, therefore avoiding complex, costly and time-consuming testing."

Its application has been consolidated in the regulation 10/2011/EC:

"(32)...As migration testing is complex, costly and time consuming it should be admissible that compliance can be demonstrated also by calculations, including modelling, other analysis, and scientific evidence or reasoning if these render results which are at least as severe as the migration testing. Test results should be regarded as valid as long as formulations and processing conditions remain constant as part of a quality assurance system."

Article 16 - Supporting documents

\2. That documentation shall contain the conditions and results of testing, calculations, including modelling, other analysis, and evidence on the safety or reasoning demonstrating compliance. Rules for experimental demonstration of compliance are set out in Chapter V.

Chapter 2 - 2.2.3. Migration modelling

To screen for specific migration the migration potential can be calculated based on the residual content of the substance in the material or article applying generally recognised diffusion models based on scientific evidence that are constructed such as to overestimate real migration.

Related lectures

Migration modeling modeling encompasses several techniques of mathematical, physical and chemical modeling, An extensive review of the predictive approaches is available in as a chapter reproduced here. The methodologies can be combined with complementary preventive and optimization approaches to develop safe and environment friendly packaging (see recent article). For compliance testing alone, the EU task-force TF-MathMod published a practical

Please refer also to the following sections

Specialized lectures: section 3

PRINCIPLES OF MASS TRANSFER - MASS REGULATORY CONTEXT EU AND MEMBER STATES - SESSION 3 TRANSFER IN FOOD PACKAGING (section 4.1 PACKAGING AND FOOD PRESERVATION (section 3.1) part1, section 4.1 - part2) GMP, SAFETY & QUALITY MANAGEMENT SYSTEM.

RESPONSIBILITIES AND - CERTIFICATION FOOD CONTACT MONOMATERIALS (section 4.2) MATERIALS (FCM'S) REGULATION (section 3.2) UNIT 4.3. MIGRATION MODELING FOR MULTI-

MATERIALS, MULTI-STEPS PROCESS, REUSABLE MATERIALS (section 4.3)

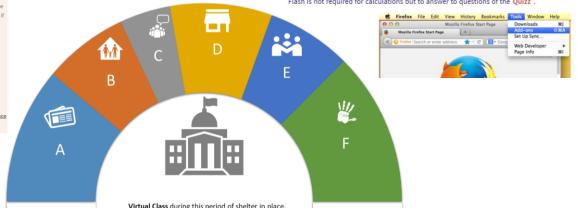
UNIT 4.2, MIGRATION MODELING IN/FROM

Specialized lectures: section 4

Introductive case Studies

Please start with this case-studies before starting with more complex cases.

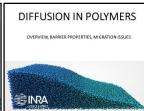
Case-study 1: Packaged sandwich - calculation of migration

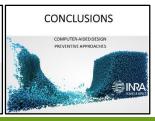

This case study includes data on the composition, geometry and physical characteristics of the packaging as well as data on the conservation and use of the product. The goal is to evaluate the risk of chemical contamination of the food by packaging, using a predictive approach, using the on-line platform: SFPP3 (Safe Food Packaging Portal version 3). The platform enables to resolve remotely several mass transfer problems including migration and permeation

user	password			
fitness	trainee			

Troubleshooting - How to activate Flash

Flash is not required for calculations but to answer to questions of the Quizz .


CONTENT


- FOOD PACKAGING OVERVIEW
- PERMEATION & BARRIER MATERIALS
- MIGRATION ISSUES
- TOXICITY
- REGULATION
- DIFFUSION IN POLYMERS
- CONCLUSIONS

MIGRATION ISSUES
PAST CRISES, DIFFUSION-SOLUBILIZATION, REGULATION

Emballages plastiques : 1964 à nos jours

Home > Law > Law-making process > Planning and proposing law > Impact assessments

Impact assessments

Impact assessments examine whether there is a need for EU action and analyse possible impacts of available solutions. These are carried out during the preparation phase, before the Commission finalises a proposal for a new law. They provide evidence to inform and support the decision-making process.

PAGE CONTENTS

The need for impact assessments

Better law-making

How to contribute

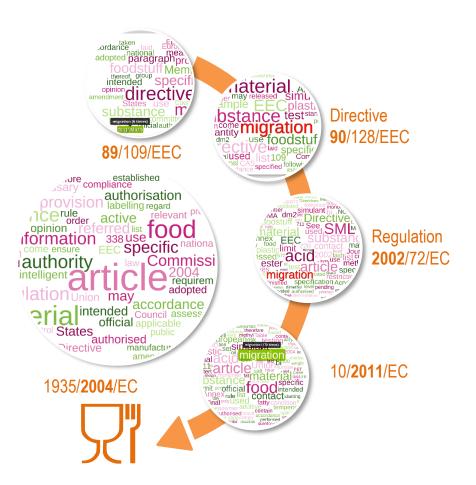
Cooperation between EU institutions

Subsidiarity and proportionality

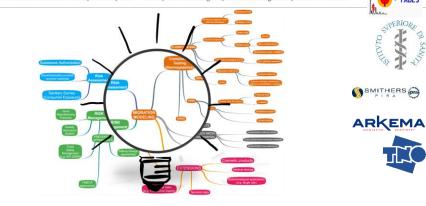
The need for impact assessments

Impact assessments are carried out on initiatives expected to have significant economic, social or environmental impacts. These can be:

- · legislative proposals
- non-legislative initiatives (e.g. financial programmes, recommendations for the negotiations of international agreements)
- · implementing and delegated acts



Food Additives and Contaminants, January 2005; 22(1): 73-90

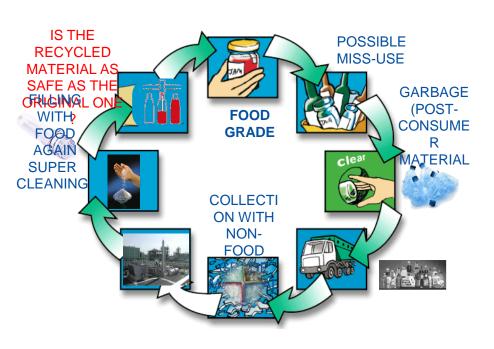

-BASF

Dow

Evaluation of migration models that might be used in support of regulations for food-contact plastics

T. BEGLEY¹, L. CASTLE², A. FEIGENBAUM³, R. FRANZ⁴, K. HINRICHS⁵, T. LICKLY⁶, P. MERCEA⁷, M. MILANA⁸, A. O'BRIEN9, S. REBRE10, R. RIJK11, & O. PIRINGER7

Fraunhofer ¹Food & Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740, USA, ²Central Science Laboratory, Sand Hutton, York Y041 1LZ, UK, ³INRA — CPCB, Moulin de la Housse, F-51697 Reims Cedex 2, France, ⁴Fraunhofer-Institut IVV, Giggenhauser Straße 3 D-85354 Freising, Germany, 5Cognis GmbH, Henkelstraße 67, D-40551 Dusseldorf, Germany, ⁶DOW, 1803 Building, Midland, MI 48674, USA, ⁷Fabes GmbH, Schragenhofstraße 35, D-80992 Munich, Germany, ⁸Istituto Superiore de Sanita, Viale Regina Elena, 299, I-0161 Rome, Italy, PIRA International, Leatherhead KT22 7RU, UK, 10 Atofina, Rue Danton 95, F-92300 Levallois-Perret, France, and 11TNO, Utrechtseweg 48, NL-3700 AJ Zeist, the Netherlands



EFSA has issued upward of 140 positive scientific opinions on the safety of processes to recycle plastics for use in food contact material.

ONLY recycled PET is authorized in EU.

500 M€ have been invested in plants capable of converting recycled plastic materials into materials suitable for packaging and food contact applications

In 2014, more than 50% of the recycled PET in Europe was used in food contact applications.

The lack of harmonisation amongst Member States generates legal uncertainty and unnecessary burden for the industry using recycled materials.

It also sets up obstacles for the Circular Economy

Misuse issues (post-use contaminations) of Polyethylene terephthalate (PET) can be easily handled: glassy polymer, it is mainly contaminated by small contaminants which can be removed by a devolatilization step above T_q

1. Filling and use of HDPE milk bottles
2. Recollection
3. Sorting

Recycling

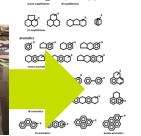
Recycling

Recycling

Recycling

Recycling

Recycling


Recycling

Recycling

Polyolefins are rubber polymers which can be easily contaminated by high molecular weight contaminants after use.

Paper and board contains large amount of residues from printing inks: aromatic (carcinogenic) and aliphatic mineral oils can be transferred without contact and lead to cross-contamination between materials

J. of Chromatography A. 2013;**1293:107-19.**

Current Biology, Vol. 13, 546-553, April 1, 2003, ©2003 Elsevier Science Ltd. All rights reserved. DOI 10.1016/S0960-9822(03)00189-1

Bisphenol A Exposure Causes Meiotic Aneuploidy in the Female Mouse

Patricia A. Hunt, " Kara E. Koehler,"
Martha Susiarjo, "Craig A. Hodges,"
Arlene Ilagan," Robert C. Voigt, 2° Sally Thomas, 3
Brian F. Thomas, and Terry J. Hassold
'Department of Genetics
'Animal Resource Center
Case Western Reserve University

Cleveland, Ohio 44106-4955

Thoren Caging Systems
Hazleton, Pennsylvania 18201

RTI International

Research Triangle Park, North Carolina 27709-2194

Summary

Background: There is increasing concern that exposure to man-made substances that mimic endogenous hormones may adversely affect mammalian reproduction. Although a variety of reproductive complications have been ascribed to compounds with androgenic or estrogenic properties, little attention has been directed at the potential consequences of such exposures to the genetic quality of the gamete.

Results: A sudden, spontaneous increase in meiotic

disturbances, including aneuploidy, in cytes from control female mice in our cided with the accidental exposure of environmental source of bisphenol A estrogenic compound widely used in polycarbonate plastics and epoxy resi damaged caging material as the source as we were able to recapitulate the mi

ties by intentionally damaging cages and water pomies. In subsequent studies of female mice, we administered daily oral doses of BPA to directly test the hypothesis that low levels of BPA disrupt female meiosis. Our results demonstrated that the meiotic effects were dose dependent and could be induced by environmentally relevant doses of BPA.

Conclusions: Both the initial inadvertent exposure and subsequent experimental studies suggest that BPA is a potent meiotic aneugen. Specifically, in the female mouse, short-term, low-dose exposure during the final stages of oocyte growth is sufficient to elicit detectable meiotic effects. These results provide the first unequivocal link between mammalian meiotic aneuploidy and an accidental environmental exposure and suggest that the oocyte and its meiotic spindle will provide a sensitive assay system for the study of reproductive toxins.

Introduction

An estimated 10%-25% of fertilized human oocytes are aneuploid; thus, numerical chromosome abnormalities

are the leading cause of miscarriage, congenital defects. and mental retardation [1]. Because almost all such aneuploidy derives from meiotic errors, considerable effort has been directed at identifying factors that increase meiotic nondisjunction. A number of potential risk factors, including irradiation (e.g., [2, 3]), smoking or drinking (e.g., [4, 5]), oral contraceptives and fertility drugs (e.g., [4, 6]), and environmental pollutants/pesticides (e.g., [7]), have been suggested. However, significant effects have been small and difficult to verify or disputed, making positive associations hard to establish. In part, this may reflect difficulties in detection. For example, the extraordinary effect of maternal age on aneuploidy may obscure less obvious associations. Further, previous studies may have focused on the "wrong" population: that is, most utilized liveborns, although virtually all aneuploidy terminates in miscarriage. Thus, the contribution of environmental insults to meiotic chromosome errors remains unknown.

We recently experienced an inadvertent environmental exposure in our mouse colony to 2,2-(4,4-dihydroxydiphenol)propane, or bisphenol A. Bisphenol A (BPA) is the monomer that is polymerized to manufacture polycarbonate plastic products and resins, such as those used to line cans containing food and beverages and

tal sealents. The exposure was acnly significant increases in meiotic rmalities, including nondisjunction; vas implicated as a potent disruptor sility to experimentally recreate the ad us to verify our initial observations response studies.

Results

2003

A Sudden Increase in Meiotic Abnormalities Is Correlated with Damage to Caging Materials

We recently reported meiotic studies of mouse mutants with defects in the alignment of the chromosomes on the first meiotic (MI) spindle [8]. This meiotic abnormality, which we have termed congression failure (Figure 1), is of particular relevance to humans because it is an agerelated feature of human oocytes and has been postulated to be causally related to the well-known increase in aneuploidy associated with advancing maternal age [9].

In the course of meiotic studies of mouse oocytes conducted in 1998, we observed a sudden and dramatic change in congression failure levels. The first wave of follicles that initiate growth in the sexually immature ovary provides access to a large cohort of oocytes, and, typically, only 1%–2% of oocytes from control females exhibit congression failure at metaphase I [8]. However, in experiments conducted in August 1998, congression failure levels suddenly spiked, and approximately 40% of control oocytes exhibited this phenotype or more severe aberrations (Figures 1 and 2).

At the same time that these studies were being conducted, we were also using the animal facility to house

Report

Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations

Tegan S. Horan, Hannah Pulcastro, Crystal Lawson, Roy Gerona, Spencer Martin, Mary C. Gieske, Caroline V. Sartain, and Patricia A. Hunt^{1,3,*}

School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA

²School of Medicine, University of California, San Francisco, CA, USA

3Lead Contact

*Correspondence: pathunt@wsu.edu https://doi.org/10.1016/j.cub.2018.06.070

SUMMARY

20 years ago, accidental bisphenol A (BPA) exposure caused a sudden increase in chromosomally abnormal eggs from our control mice [1]. Subsequent rodent studies demonstrated developmental effects of exposure with repercussions on adult health and fertility (e.g., [2–9]; reviewed in [10–17]). Studies in monkeys, humans, fish, and worms suggest BPA effects extend across species (e.g.,

[18–30]; reviewed sulted in ubiquite and human BPA sulted in "BPA-fre turally similar bis environmental a [34–41]). We repo

2018

changes mirroring our previous BPA experience and implicating exposure to BPS (a common BPA replacement) from damaged polysulfone cages. Like with BPA [1, 2, 5], our data show that exposure to common replacement bisphenols induces germline effects in both sexes that may affect multiple generations. These findings add to growing evidence of the biological risks posed by this class of chemicals. Rapid production of structural variants of BPA and other EDCs circumvents efforts to eliminate dangerous chemicals, exacerbates the regulatory burden of safety assessment, and increases environmental contamination. Our experience suggests that these environmental contaminants pose a risk not only to reproductive health but also to the integrity of the research environment. EDCs, like endogenous hormones, can affect diverse processes. The sensitivity of the germline allows us to detect effects that, although not immediately apparent in other systems, may induce variability that undermines experimental reproducibility and impedes scientific advancement.

Results and Discussion

In the course of meiotic studies in male and female mice, we observed variation in meiotic recombination (measured by the number of MLH1 foci in pachytene stage meiocytes), with levels in some controls reaching values characteristic of BPA-exposed animals [2, 5]. Although the change in pooled data was subtle, variation among litters was striking (Figure 1). Given our previous experience with BPA leaching from polycarbonate cages and water bottles [1], damaged materials were an obvious suspect. When white residue was evident on the surface of some polysulfone cages in our facility (Figure 2A), we suspected that exposure to chemicals leaching from the damaged polymer was eliciting meiotic effects.

An Unexpected Contaminant

Polysulfone is comprised of BPA and diphenyl sulfone (Figure 2B); thus, we suspected that these were the contaminants of interest. Liquid chromatography-tandem mass spectrometry (LC-MS)/MS analysis of a methanol extraction of damaged cages, however, demonstrated the presence of both BPA and BPS (Figures 2C-2F). Because polymeric aromatic ethers, like their monomeric counterparts, cannot undergo nucleophilic substitution to generate an unsubstituted aromatic ring at the reaction site, degradation results in the formation of a phenolic group. Therefore, damaged polysulfone is, in fact, more likely to generate BPS than diphenyl sulfone is (Figure 2B). Unfortunately, high signal levels in both control and solvent blanks made it impossible to determine if diphenyl sulfone was a significant contaminant.

Replacement bisphenols have rapidly emerged in consumer products, and studies of them are limited. However, plastics containing them can leach estrogenic chemicals [43, 44], and exposure has been reported to induce adverse effects similar to BPA (e.g., [45–52]; reviewed in [53]). Our findings suggest that, although newer polymers like polysulfone are more resistant to chemical damage than polycarbonate is, damage can occur in the course of normal use and may result in the release of contaminants that are not constituent components of the

Bisphenol Analogs Elicit Meiotic Effects

To eliminate contamination, all caging materials in the facility were replaced, new breeding stocks were purchased, and studies were conducted to confirm that control values in both

Current Biology 28, 1-7, September 24, 2018 © 2018 Elsevier Ltd. 1

^{*}Correspondence: pah13@po.cwru.edu

⁵Present address: Lab Products, 742 Sussex Avenue, P.O. Box 639, Seaford, Delaware 19973.

Environ Sci Pollut Res (2009) 16:278-286 DOI 10.1007/s11356-009-0107-7

AREA 6 • PERSISTANT ORGANIC POLLUT

Endocrine disruptors in bot estrogenic burden and migr

Martin Wagner · Jörg Oehlmann

Received: 6 November 2008 / Accepted: 18 December 2008 © The Author(s) 2009. This article is published with open a

Abstract

Background, aim, and scope Food consumption important route of human exposure to endocrine-dischemicals. So far, this has been demonstrated by emodeling or analytical identification of single substafoodstuff (e.g., phthalates) and human body fluid urine and blood). Since the research in this field is for few chemicals (and thus missing mixture effects), the contamination of edibles with xenohormones is unknown. The aim of this study was to assess the int estrogenic burden of bottled mineral water as mode stuff and to characterize the potential sources of the genic contamination.

Materials, methods, and results In the present staanalyzed commercially available mineral water in an system with the human estrogen receptor alpha and cestrogenic contamination in 60% of all samples maximum activity equivalent to 75.2 ngl of the nat hormone 17β-estradiol. Furthermore, breeding of the luskan model Potamopsyrgus antipodarum in water made of glass and plastic [polyethylene terepl (PET)] resulted in an increased reproductive ou ansils cultured in PET bottles. This provides first e that substances leaching from plastic food par materials act as functional estrogens in vivo.

Responsible editor: Markus Hecker

M. Wagner (ES) · J. Oehlmann
Department of Aquatic Ecotoxicology,
Johann Wolfgang Goethe University,
Siesmayerstr. 70 A,
60054 Frankfurt am Main, Germany
e-mail: wagner@bio.uni-frankfurt.de

EDITORIAL

The perils of plastic

A 'round-robin' spam e-mail that is clearly servers worldwide claim that drini water that has been left in a warm c breast cancer. Is this warning just an urban i hold a grain of truth? The FDA, it seems, the side of caution; earlier this year, the crised its position on the safety of bisphem chemical used in the manufacture of plastic deemed safe for food-contact use, the FI expressed "some concern" about the potentia th BPA poses to futuses, infants and young that BPA poses to futuse, infants and young

What exactly is BPA and why has its alarm? First synthesized in 100s, BPA has a key component in the production of plas ing polycarbonate and epoxy resins. Polyclear, heat-resistant, shatter-proof materia that make it ideal for the manufacture of diparticularly those used by young children Epoxy resins are also used by the food a lordstry—they provide the protective co inside many metal-based cans. Standart exts supported the safety of BPA and the FI it for food-contact use in the 1960s. Over eyars, however, concern has mounted the environmental exposure to BPA might dis functioning of the endocrine system.

The term endocrine disruption was come 1990s. Endocrine disruptors comprise a divindustrial chemicals that exert numerous dand functional effects on the endocrine syst tiple biological pathways. Many of these che the effects of endogenous hormones, such BPA and other endocrine-disrupting che been implicated in obestly, neutrological de ductive dysfunction and cancer. In addition octanoic acid (PFOA) and perfluoroocita (PFOS)—common household chemicals for stick' and waterproof materials—have rs

linked to thyroid disease. Mutuge The Endocrine Society has recognized to problems associated with the widespread to trial chemicals. In June 2009, the society p NAS findings of a task force commissioned to the mechanisms of action and potential bis endocrine disruptors (Diamanti-Kandari

NATURE REVIEWS ENDOCRINOLOGY

cussed (Safe 2000, 2005; Sha 2005) due to the multifactoral diseases, although evidence fo to xenohormones and develop tive disorders strengthens (Sha WATER BESEARCH 46 (2012) 571-583

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/watres

Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed

Cristina Bach a,b,*, Xavier Dauchy a, Marie-Christine Chagnon c, Serge Etienne b

* ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 rue Lionnois, 54000 Nancy, France b Institute Jean Lamour, UMR 7198, Department SIZM, Ecole des Mines de Nancy, Nancy-University, Parc de Saurupt, CS 14234, 54042 Nancy-Trance

Derttech "Packtox", University of Burgundy, 1 Esplanade Erasme, AgroSupDijon Nord, 21000 Dijon, France

ARTICLE INFO

Article history: Received 27 July 2011 Received in revised form 21 November 2011 Accepted 22 November 2011 Available online 6 December 2011

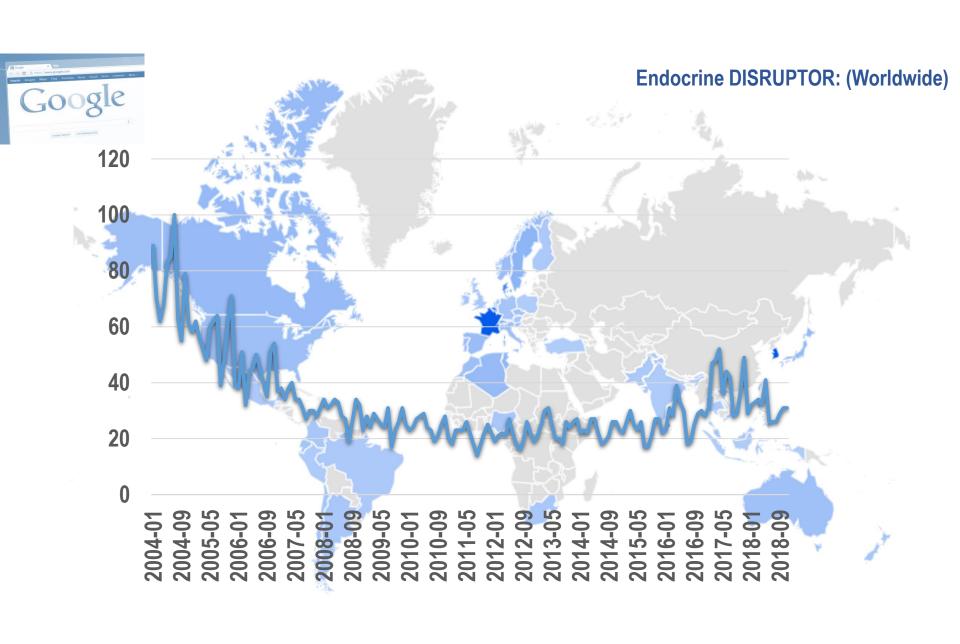
Keywords:
Bottled water
Mutagenicity
Genotoxicity
Endocrine disruptors

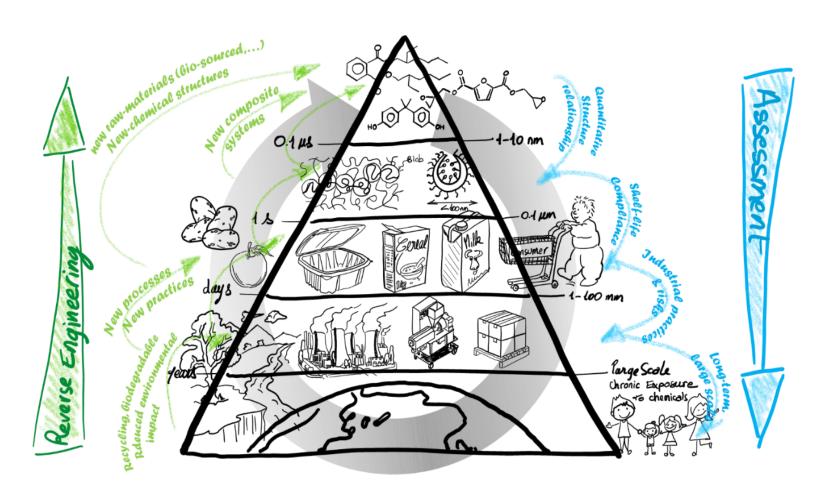
ABSTRACT

A declaration of conformity according to European regulation No. 10/2011 is required to the ensure the safety of plattic materials in contact with foodstuffs. This regulation established is a contact with foodstuffs. This regulation established by the positive list of substances that are authorized for use in plastic materials. Some compounds are substances and/or specifications according to their toxicological data. Despite this, the analysis of PET reveals some non-intentionally added substances NMASI produced by authorized initials recent such addition.

Cenotoxic and estrogenic activities in PTT-bottled water have been reported. Chemical mixtures in bottled water have been suggested as the source of these toxicological effects. Truthermore, supple perparation techniques, such as solid-plase extraction [STD, to extract estrogen-like compounds in bottled water are controversial. It has been suggested that inappropriate extraction methods and sample treatment may result in false-negative or positive responses when testing water extract in bioassays. There is therefore a need to combine chemical analysis with bioassays to carry out hazard assessments.

Formaldehyde, acetaldehyde and antimony are clearly related to migration from PET into water. However, several studies have shown other theoretically unexpected substances in bottled water. The origin of these compounds has not been clearly established (PET container, cap-sealing resins, background contamination, water processing steen, NLS, receide PET, etc.).


Here, we surveyed toxicological studies on PET-bottled water and chemical compounds that may be present therein. Our literature review shows that contradictory results for PET-


List of abbreviations: AA, acetaldehyde: AFEOS, polyethoxylated nonytphenole, BBP, benzylburyl phthalate, BHET, bis[bydroxyethyd] terephthalate, BHET, buylated hydroxyloulene; BPA, bisphenol A, DBP, dishorp) phthalate, DBEA, dis-be-buyl phthalate, DEG, dis-be-buylate, DEG, dis-buylate, DEG, dis-

tris(nonylphenyl) phosphite; TOC, total organic carbon; YES, yeast estrogen screen.

**Corresponding author. ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 rue Lionnois, 54000 Nancy, France Tel: +33 383 88 729, fax +33 383 88 720.

E-mail address: cristina.bach@anses.fr (C. Bach). 0043-1354/\$ − see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.watres.2011.11.062

Role of INRA Scientific support to global and local solutions and assessments

• THIS LECTURE: http://modmol.agroparistech.fr/masterEU/

 MY LECTURES AT MSU (MI,USA): http://www.fshn.msu.edu/events/event/Vitrac

 DIFFUSION

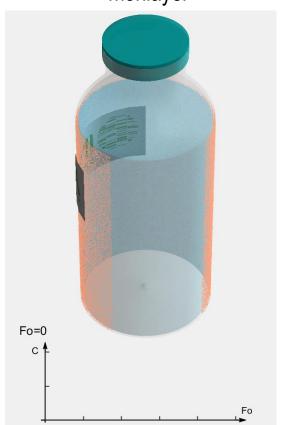
https://mediaspace.msu.edu/media/dr.+olivier+vitrac +presentsa+diffusion+coefficients+of+organic+solut es+in+polymersa/1_zz20dgt9

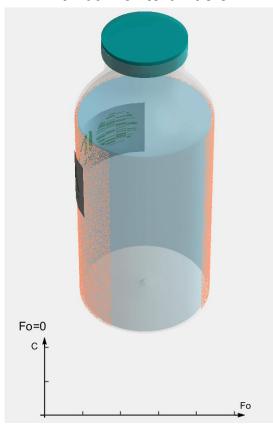
PARTITIONING

https://mediaspace.msu.edu/media/Dr.+Olivier+Vitrac +presentsA+An+atomistic+Flory-

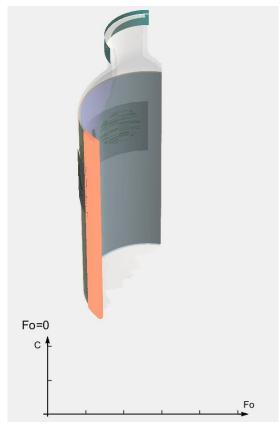
Huggins+formulation+for+the+tailored+prediction+of +activity+and+partition+coefficients/1_uzi6h91k SAFETY MANAGEMENT:

https://mediaspace.msu.edu/media/WorkshopA+Prediction+of+the+migrationA+beyond+conventional+estimates*/1 won1m7aw


 RISK ASSESSMENT: https://www.youtube.com/watch?v=7LMnc4czpuY

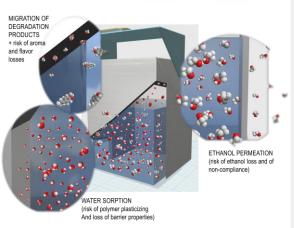

DESORPTION OF PACKAGING CONSTITUENTS (ADDITIVES, MONOMERS AND OLIGOMERS, NIAS...)

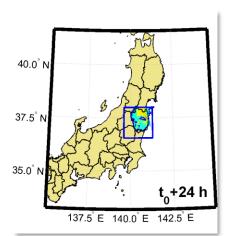
SELF-SIMILAR SITUATIONS WHICH OBEY
TO THE GENERAL MODEL OF DIFFSION-SOLUBILIZATION

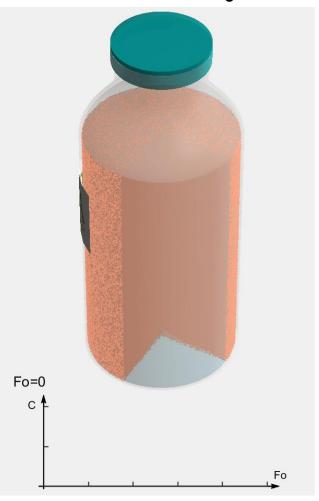

monlayer

with barrier to diffusion

multilayer

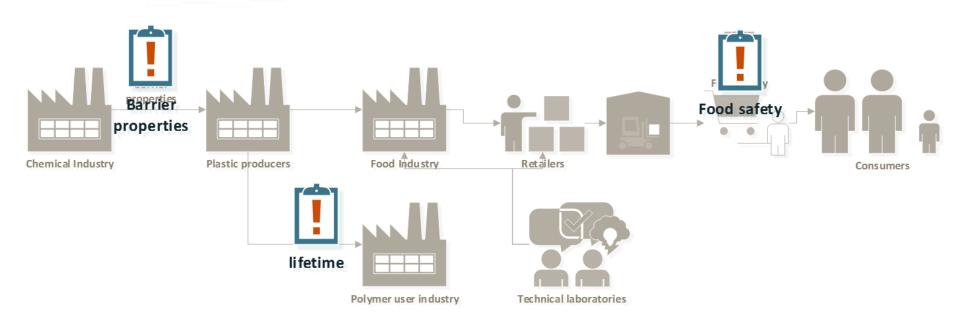




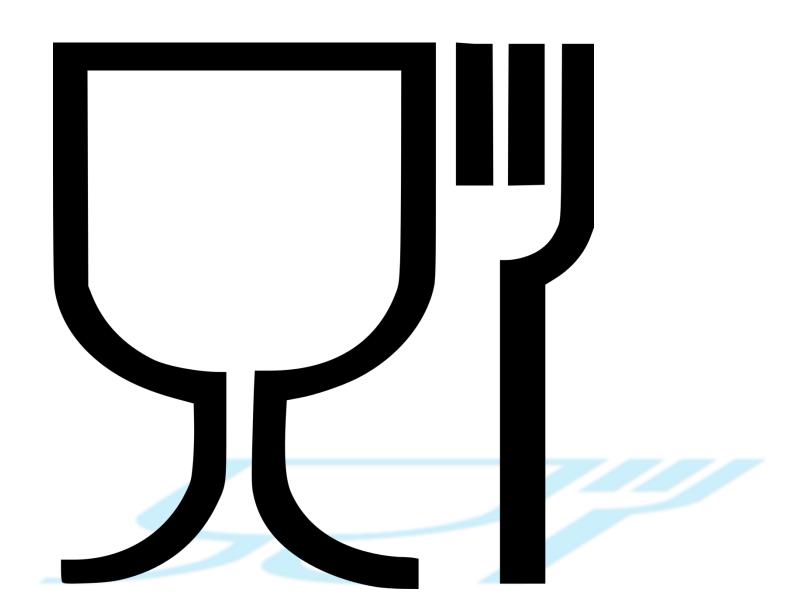

PERMEATION OFFOOD CONTENTS PERMEATION FROM ENVIRONMENT

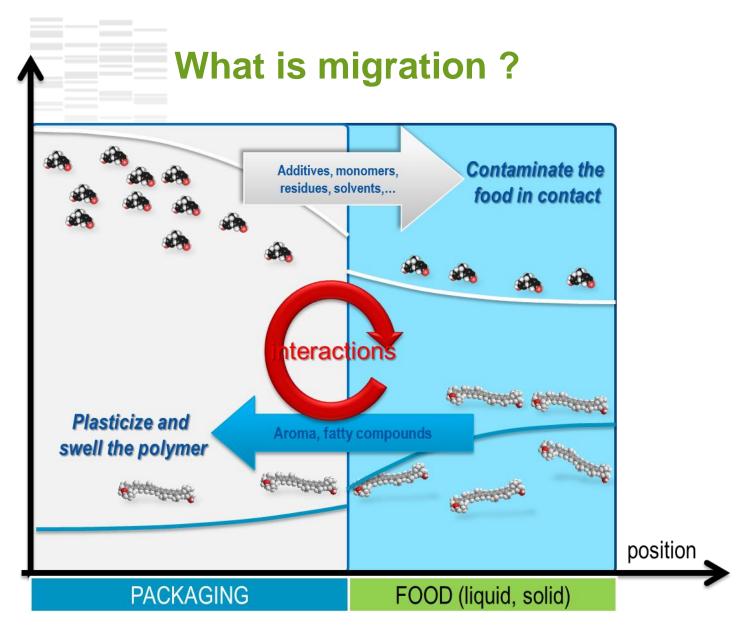
alcoholic beverages

radionuclides



OUR MAIN APPLICATIONS Overview



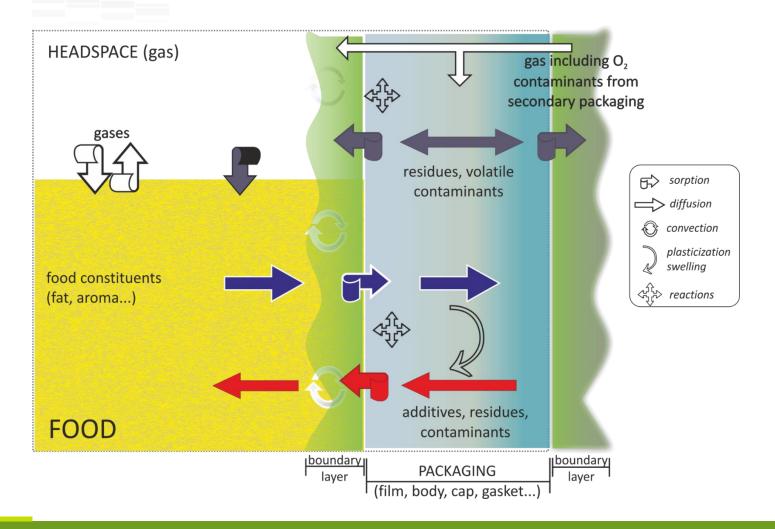


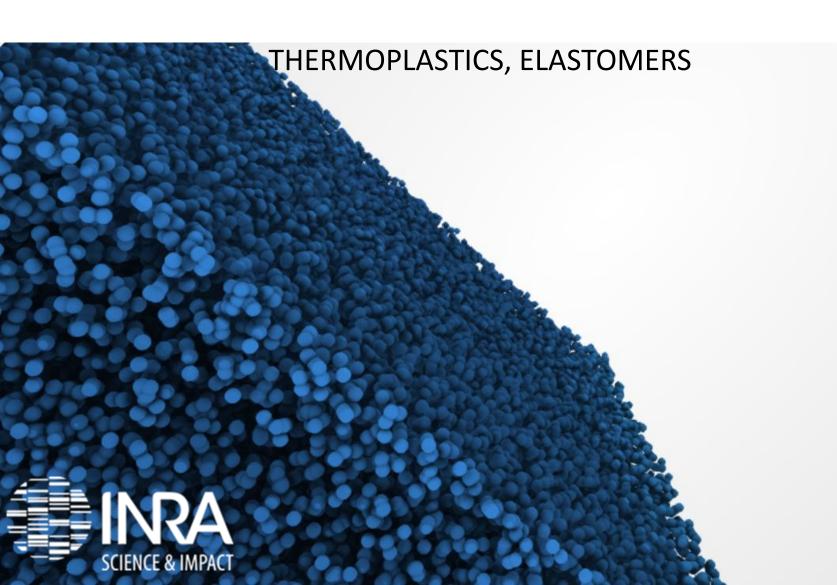
Research laboratories

Concentration

FOOD PACKAGING INTERACTIONS

Example of sterilized product



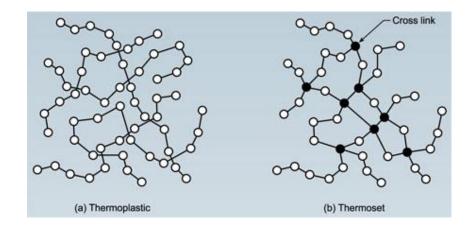

Coupled mass transfer

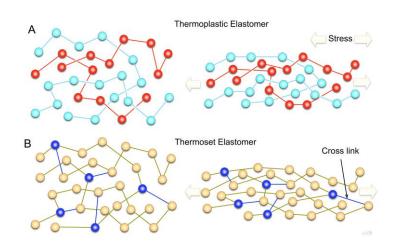
between the food product and the packaging material

FOOD PACKAGING MATERIALS

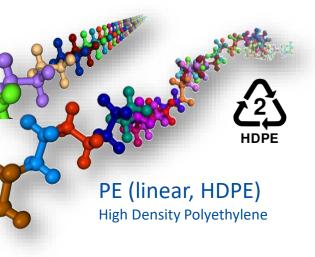
Classification of polymers

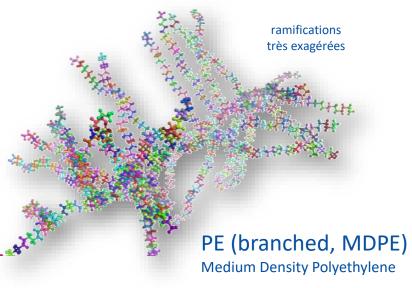
Thermoplastics: A thermoplastic, or thermosoftening plastic, is a polymer that melts, and returns to a solid state upon cooling.

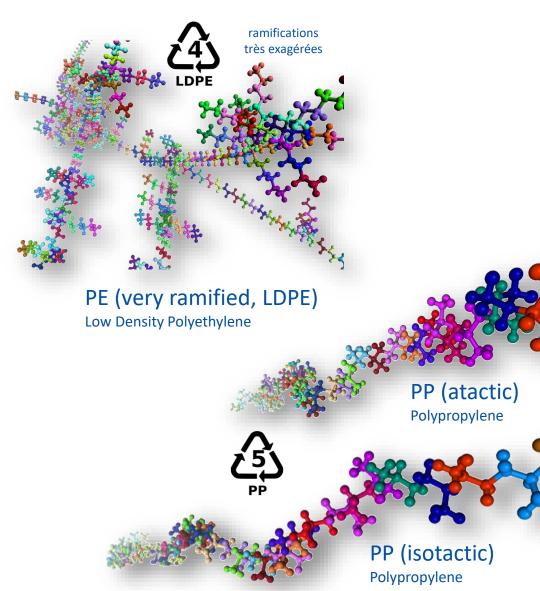

Examples: PE, PP, PS, PVC ...


Thermosets: A thermosetting plastic, also known as a thermoset, is polymer material that irreversibly cures. The cure may be induced by heat, generally above 200 °C, through a chemical reaction, or suitable irradiation

Examples : Phenolic, epoxydes ...


Elastomers: An elastomer is a polymer with viscoelasticity (colloquially "elasticity")


Exemples: Silicones, natural rubber ...



Polyolefins: PE – PP

POLYOLEFINSYLÈNE

LDPE

(Low density polyethylene)

- Vapour barrier
- Flexibility for seals
- Mouldability Tearability
 - Flexibility Excellent stretchability • Sterilisation
 - Chemical inertness
 - Transparency Tactile effect

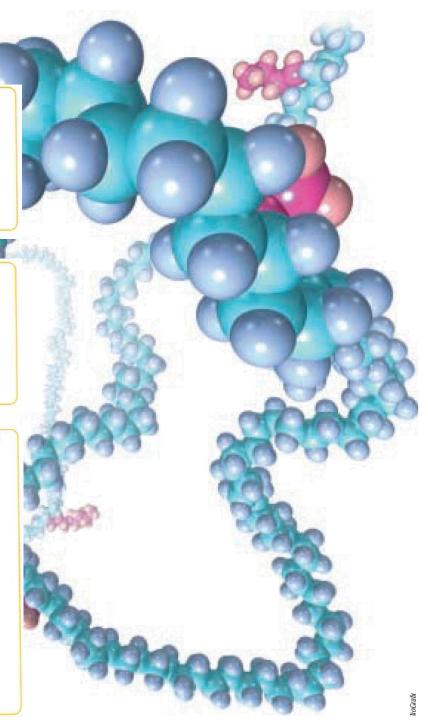
- Trays Boxing
- Screw or clip tops Nozzles
- Stretchable and retractable films for bundling (multiple-unit packs) and palletting • Bottles
- Stopper seals Carrier bags
- Small bags Tubes

HDPE

(High Density Polyethylene)

- Vapour barrier
- Mouldability Rigidity (for mechanical testing) • Impact resistance • Chemical inertness
- Resistance to stress-cracking
- Sterilisation Suitable for freezing (-40°C) • Opaqueness

- Large drums
- Screw or clip tops
- Bottles
- · Crates and cases · Covers
- Films for postal dispatch
- Flasks Drums and reusable containers • Pots • Tubes


• Rigidity (Resistance to sterilisation)

- (Polypropylene) Resistance to cold Vapour barrier
 - Chemical inertness
 - Suitable for freezing (-40°C)
 - Suitable for micro-waves (+120°C)
 - Low density
 - · Resistant to stress-cracking
 - Resistant to folding Thermal packing • Contact transparency

- Alveolate material Tray containers
- Screw and clip tops
- Reusable crates and cases Covers
- Thermoforming sheets
- Transparent films and bags
- Bottles
- Reheatable plates Pots
- Tubs Tubes

- Clarified PP
- OPP (oriented PP)
- EPP (expanded polypropylene: resistance to repeated impact)
- Flasks
- Films
- Reusable wrapping

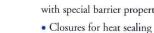
POLYVINYLS PS Compact: Crystal PS: Transparency Tray containers (Polystyrene) with stretch film) • Brilliance • Rigidity • Egg containers • Stoppers PS (atactique) PS impact: opaque • Covers • Thermoforming sheets, • impact-resistance polystyrene pots for dairy products, • Brilliance • Cleavability cups for automatic drink machines Direct gassing: • Light • Heat sealable • Warm touch Plates/trays **PVC** • Tray containers • Boxes PVC • Inertia • Good stretchability • Bottles • Flasks Machinability polyvinyl chloride (Polyvinyl • Blister packs Excellent memory chloride) • Sheets for thermoforming · Resistance to stress-cracking Food-contact films Transparency Structure adapted to application: Flexible and rigid packaging Complexes

(Combination

complementary properties

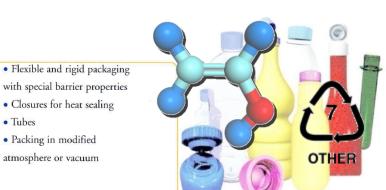
of materials using . Barrier to aroma,

perfume and gas


PE, PP, PVC, PET, EVOH,

EVOH

polyvinyl alcohol


PVDC, alumin-

ium, paper or cardboard).

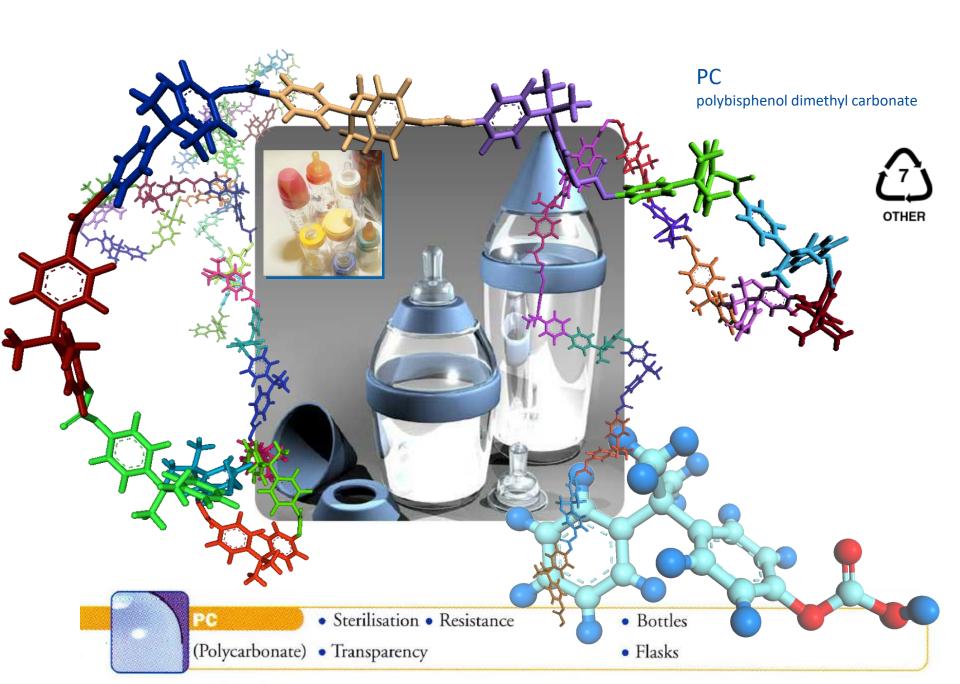
 Packing in modified atmosphere or vacuum

• Tubes

Polyethylene terepthalate

- but not transparent
- Temperature resistant to 220° C
- PETG (glycol): amorphous, same properties as (A)PET
- Films Flasks Pots
- Tray containers Lids
- Thermoforming sheets

PET/PEN copolymer


- Gas barrier

Bottles

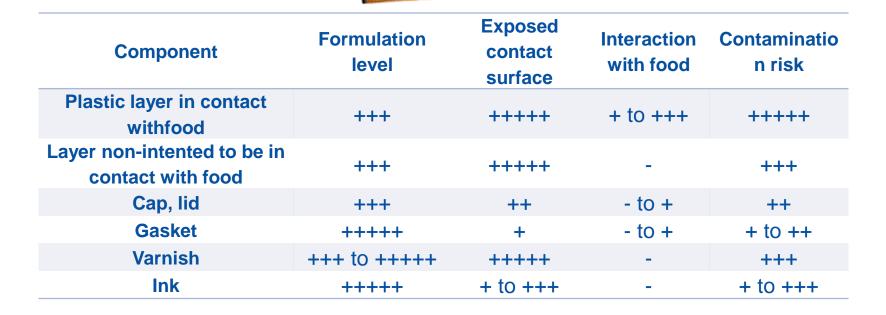
UV barrier

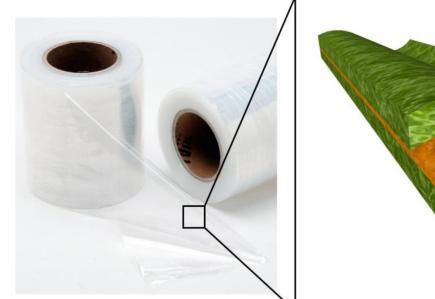
Flasks

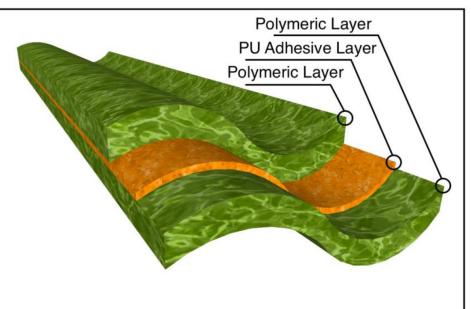
POLYCARBONATES

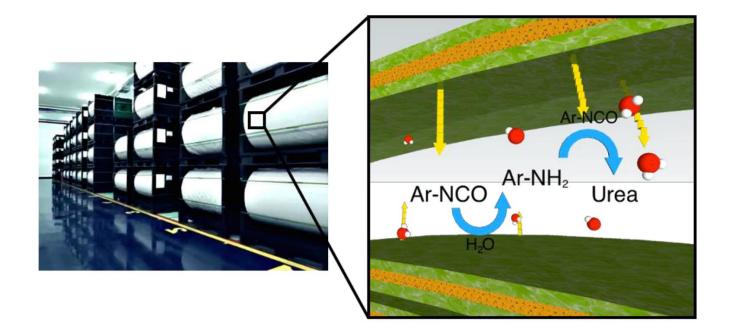
MIGRATION CLASSES

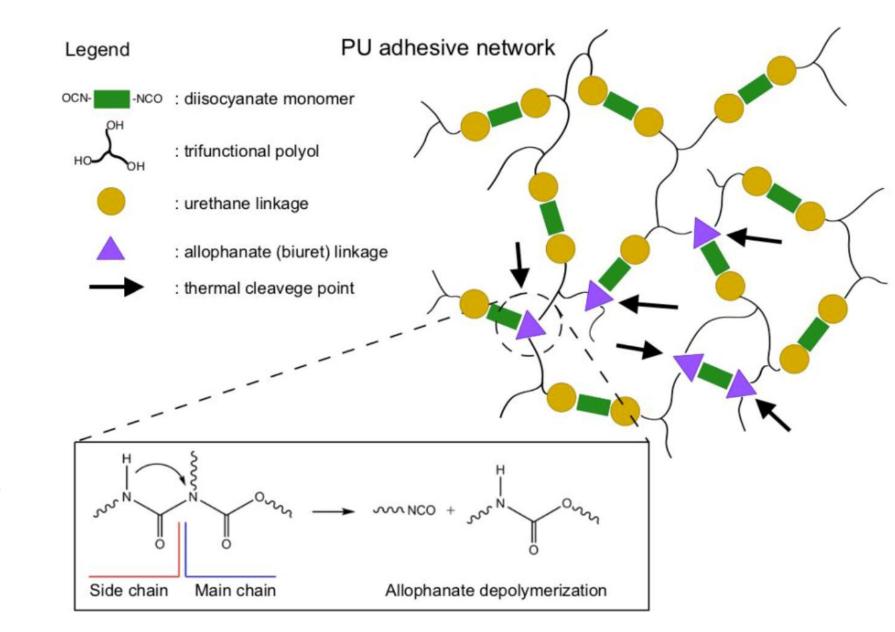
Polymer	Formulation level	Degradation products	Interaction s with fatty food	Interaction s with alcohols and acids	Contamination risk
PET	+	++ (acetaldéhyde, cyclic trimer)	-	+	+
PE	+++++	+++ (carbonyled compounds)	++++	_	++++
PP	+++++	+++ (carbonyled compounds)	+++	-	++++
PS	+++	++ phenol, benzaldehyde, acetophenone	+++	non documente d	+++(+)
PVC	+++ à +++++ (si plastifié)	++ HCI	+++	non documente d	+++ to +++++

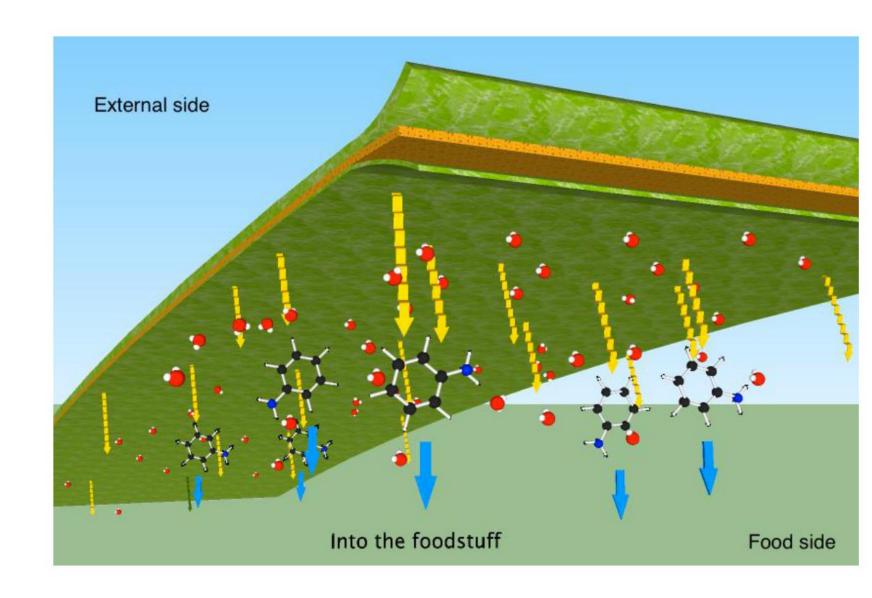


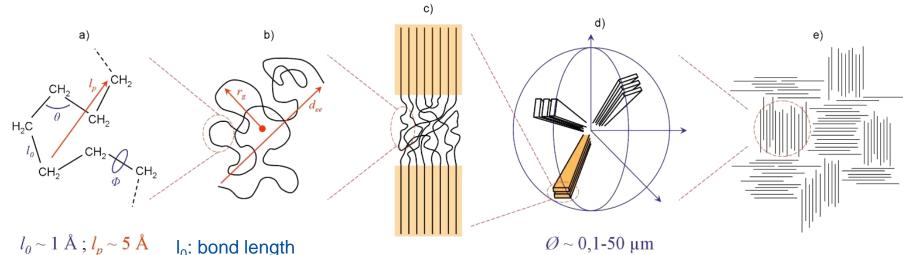

Polyurethane based
Sylil terminated polyether based
Butyl rubber based
Natural rubber water-based adhesives
Carboxylated-SBR water-based adhesives
Epoxies
Modified acrylics


Cyanoacrylates



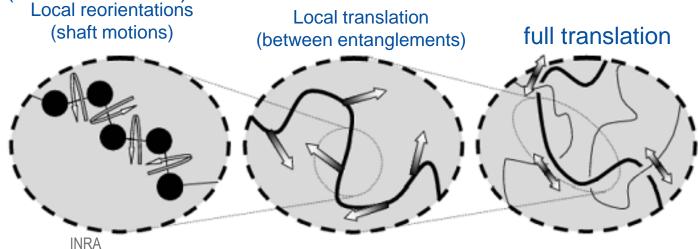




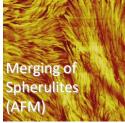


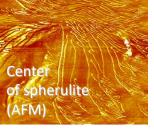
I₀: bond length

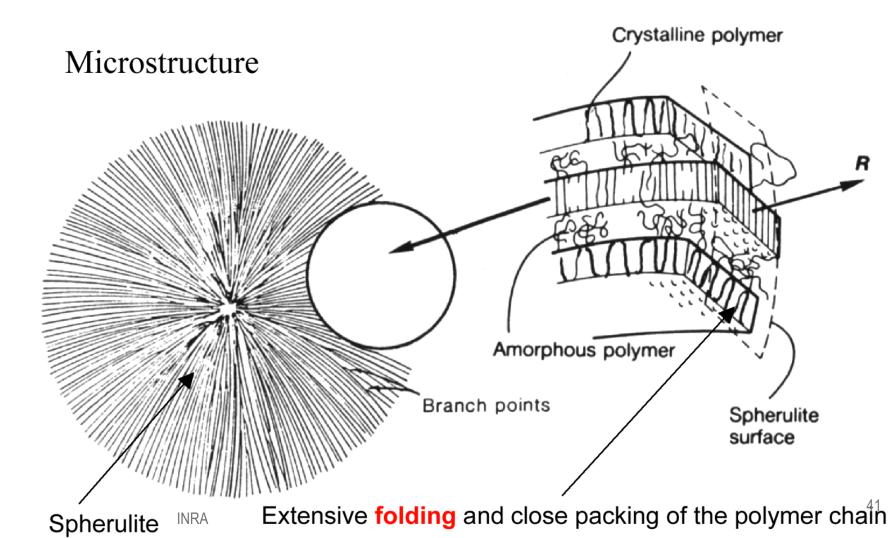
I_p: persistence length

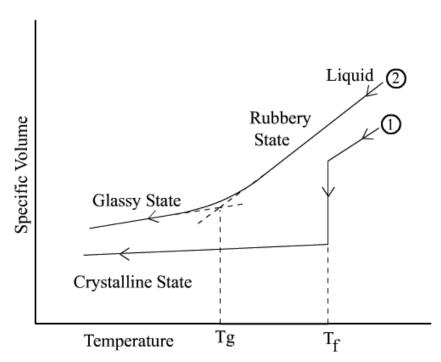

Φ: torsion angle

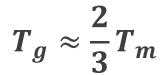
r_g: gyration radius

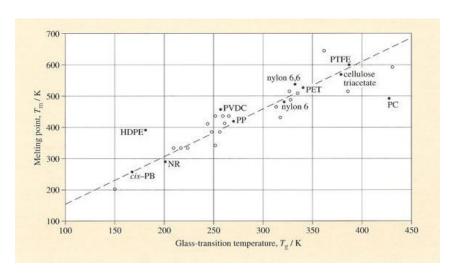

dee: end-to-end distance

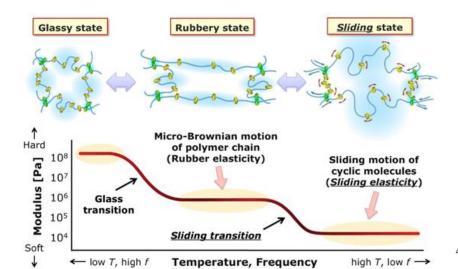

- Chemical structure a)
- b) Intermingled chains
- Semi-crystalline structure c)
- Poly-crystalline structure d)
- Heterogeneous material e)

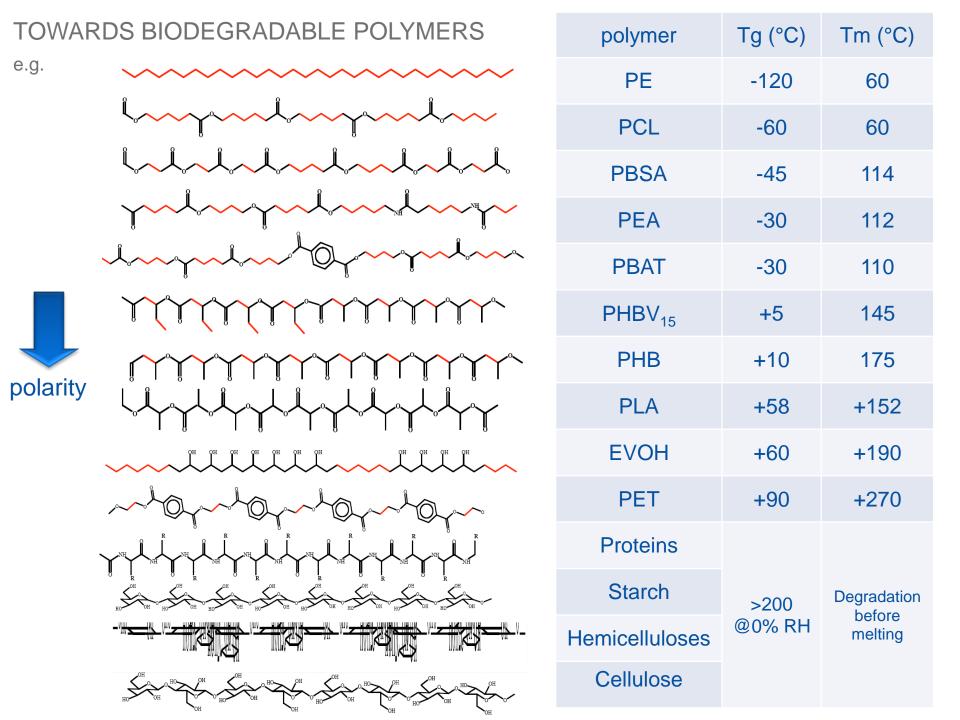


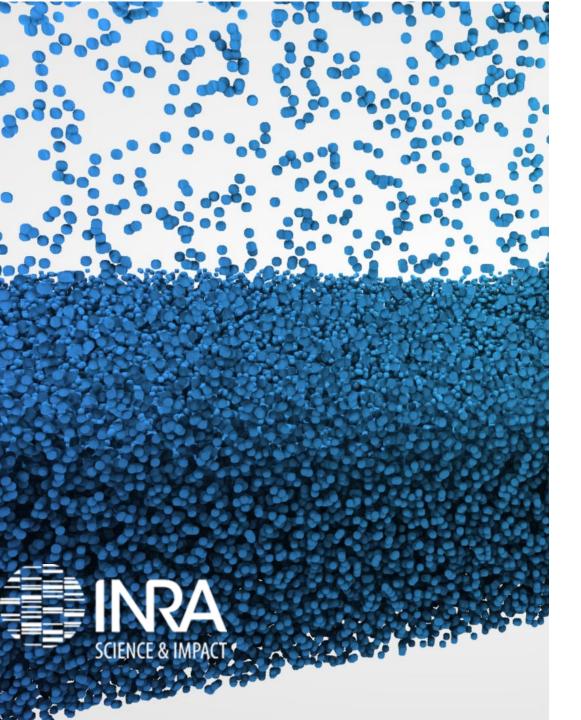





Critical temperatures for polymers


Glass transition temp. T_g Melting point T_m

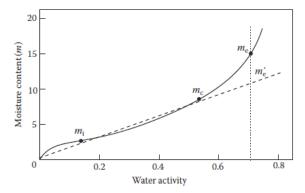



$$T_g = T_{g^{\infty}} - \frac{K}{\left\langle M_n \right\rangle}$$

PERMEATION

OVERVIEW OF BARRIER PERFORMANCES

TABLE 12.1


Degree of Protection Required by Various Foods and Beverages (Assuming 1 Year Shelf Life at 25°C)

Food/Beverage	Maximum Amount of O ₂ Gain (ppm)	Other Gas Protection Needed	Maximum Water Gain or Loss	Requires High Oil Resistance	Requires Good Barrier to Volatile Organics
Canned milk and flesh foods	1–5	No	3% Loss	Yes	No
Baby foods	1-5	No	3% Loss	Yes	Yes
Beers and wine	1–5	<20% CO ₂ (or SO ₂) loss	3% Loss	No	Yes
Instant coffee	1-5	No	2% Gain	Yes	Yes
Canned soups, vegetables and sauces	1–5	No	3% Loss	No	No
Canned fruits	5-15	No	3% Loss	No	Yes
Nuts, snacks	5-15	No	5% Gain	Yes	No
Dried foods	5-15	No	1% Gain	No	No
Fruit juices and drinks	10–40	No	3% Loss	No	Yes
Carbonated soft drinks	10–40	<20% CO ₂ loss	3% Loss	No	Yes
Oils and shortenings	50-200	No	10% Gain	Yes	No
Salad dressings	50-200	No	10% Gain	Yes	Yes
Jams, jellies, syrups, pickles, olives, vinegars	50–200	No	10% Gain	Yes	No
Liquors	50-200	No	3% Loss	No	Yes
Condiments	50-200	No	1% Gain	No	Yes
Peanut butter	50-200	No	10% Gain	Yes	No

Source: Adapted from Salame, M., The use of low permeation thermoplastics in food and beverage packaging, in: Permeability of Plastic Films and Coatings, Hopfenberg, H.B. (Ed.), Plenum, New York, p. 275, 1974.

Example 12.1

A breakfast cereal has an initial moisture content $m_{\rm i}$ of 2.5%. The COP is the critical moisture content $m_{\rm c}$ of 8% due to loss of crispness (Robertson, 2011a). The equilibrium moisture content $m_{\rm e}$ at 25°C is 14.8% and the pseudo-equilibrium moisture content $m_{\rm e}'$ obtained by extension of the linear portion of the isotherm is 11%; the slope of the line (b) is 0.147 g H₂O/g solids/unit $a_{\rm w}$ (see Figure 12.4).

FIGURE 12.4 Schematic of a typical moisture sorption isotherm for breakfast cereal with a superimposed straight line of slope b. Initial (m_i) , critical (m_c) and equilibrium (m_e) moisture contents are indicated together with the pseudo-equilibrium (m'_e) moisture content used for package shelf life calculations.

Calculate the shelf life of the cereal if it is packaged in a bag of $50\mu m$ LDPE or $50\mu m$ OPP. The weight of dry cereal in the package is 400g and the dimensions of the bags are $20\,cm\times30\,cm$. The packed product is to be stored at $25^{\circ}C$ and $75^{\circ}RH$.

Surface area of the bags is
$$20 \times 30 = 600 \text{ cm}^2 = 0.06 \text{ m}^2$$

Vapour pressure of pure water at 25°C = 2.3756 cm Hg

Data from a plastic film supplier indicated that WVTRs determined at 25°C/75% RH were

$$50 \,\mu m \, LDPE = 8.0 \, g \, m^{-2} \, day^{-1}$$

$$50 \mu m OPP = 1.35 g m^{-2} day^{-1}$$

These WVTRs must be converted into water vapor permeances P/X by dividing by the driving force for water vapor transfer. The saturated water vapor pressure at 25°C is (from Table 4.10) 2.376. Thus, the driving force at 25°C/75% RH is

$$2.376 \times 0.75 = 1.782 \text{ cm Hg}$$

For LDPE film,

$$\frac{P}{X} = \frac{8.0 \text{ g}}{\text{m}^2 \text{ day}} \times \frac{1}{1.782 (\text{cmHg})}$$
$$= 4.489 \text{ gH}_2 \text{Om}^{-2} \text{ day}^{-1} (\text{cmHg})^{-1}$$

For OPP film.

$$\frac{P}{X} = \frac{1.35 \text{g}}{\text{m}^2 \text{day}} \times \frac{1}{1.782 \text{(cmHg)}}$$
$$= 0.758 \text{gH}_3 \text{Om}^{-2} \text{day}^{-1} \text{(cmHg)}^{-1}$$

Substituting into Equation 12.10 for cereal packed in LDPE film,

$$\ln \frac{11-2.5}{11-8} = 4.489 \cdot \frac{0.06}{400} \cdot \frac{2.3756}{0.147} \cdot \theta_s$$
 (12.12)

Solving for shelf life θ_{e} ,

$$\theta_s = \frac{[ln2.833]}{1.088 \times 10^{-2}}$$
$$= \frac{1.0413}{1.088 \times 10^{-2}}$$
$$= 96 days$$

If the cereal were packed in OPP film instead,

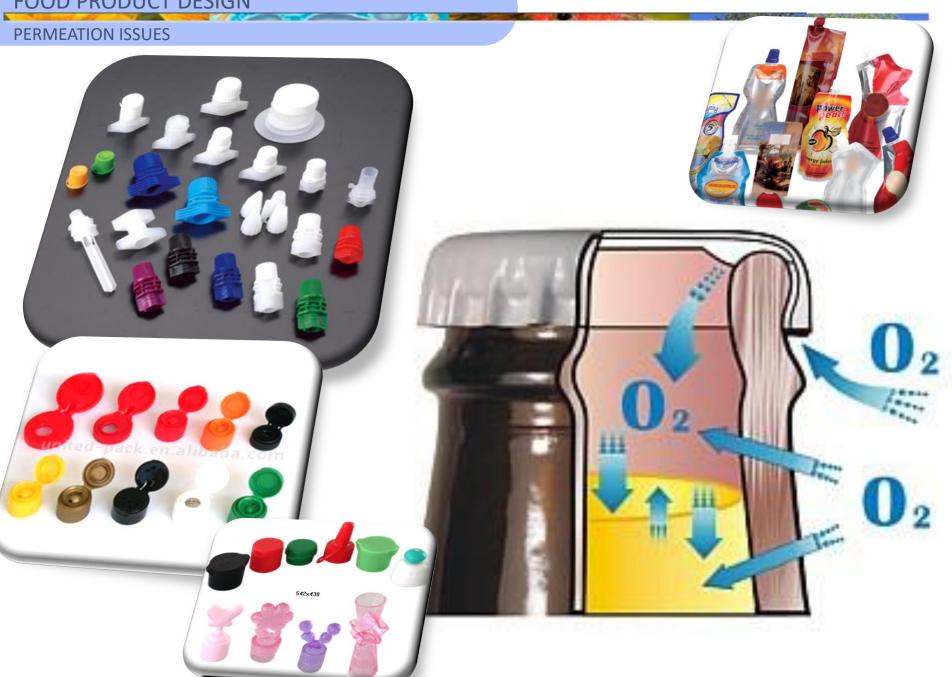
$$\theta_s = \frac{[\ln 2.833]}{1.837 \times 10^{-3}}$$
$$= 567 \, \text{days}$$

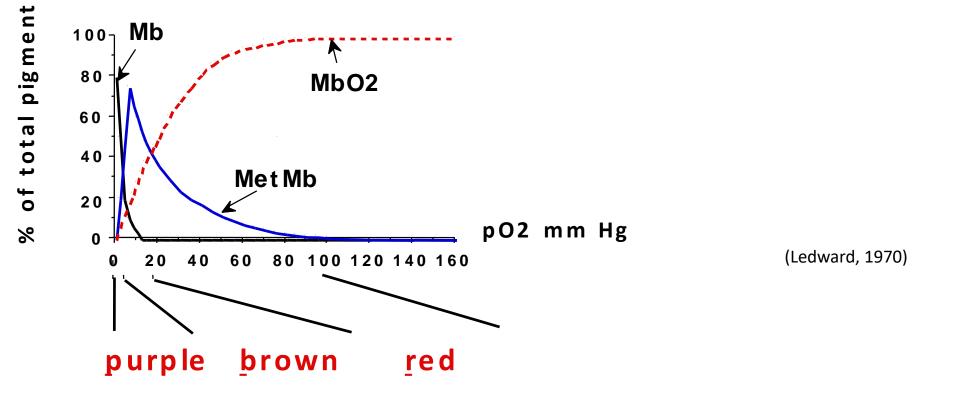
The shelf life is inversely related to the water vapor permeances of the film; since P/X for LDPE is 5.9 times that for OPP, the shelf life in the latter film is 5.9 times that in the former. If the required shelf life were, say, 300 days, then Equation 12.10 could be recalculated using $t_s = 300$ and solved for P/X. From this, the corresponding WVTR could be calculated and the film supplier requested to supply a film that met this specification at 25° C and 75° k RH.

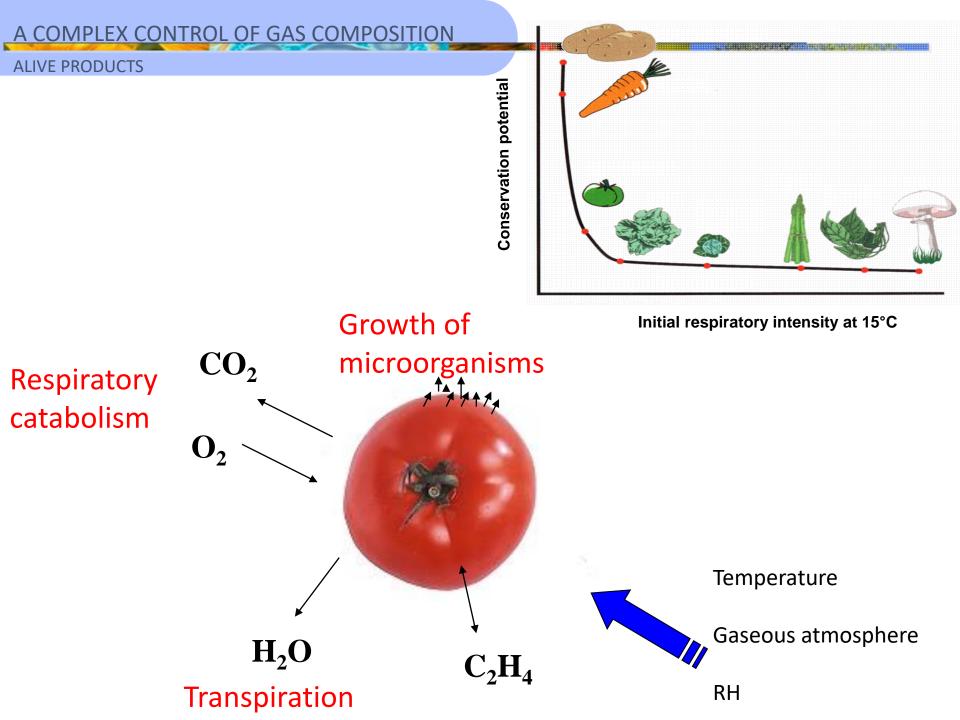
As noted earlier, the shelf lives calculated earlier will be longer than what would be achieved in practice because the pseudo-equilibrium moisture content m'_e used in the calculations is less than the actual equilibrium moisture content, which is the real driving force for water vapor transport. Because of the simplifying assumptions made in the earlier calculations, the calculated shelf lives should be verified by actual shelf life testing.

FOOD PRODUCT DESIGN

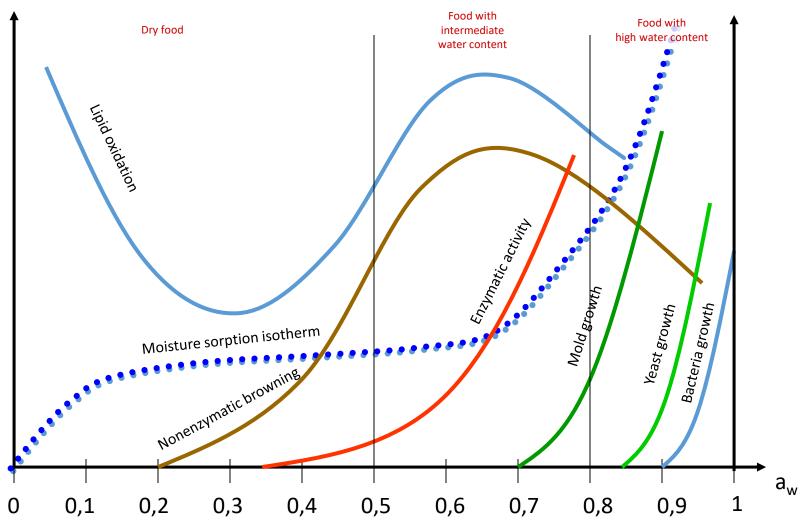
PACKAGING ISSUES

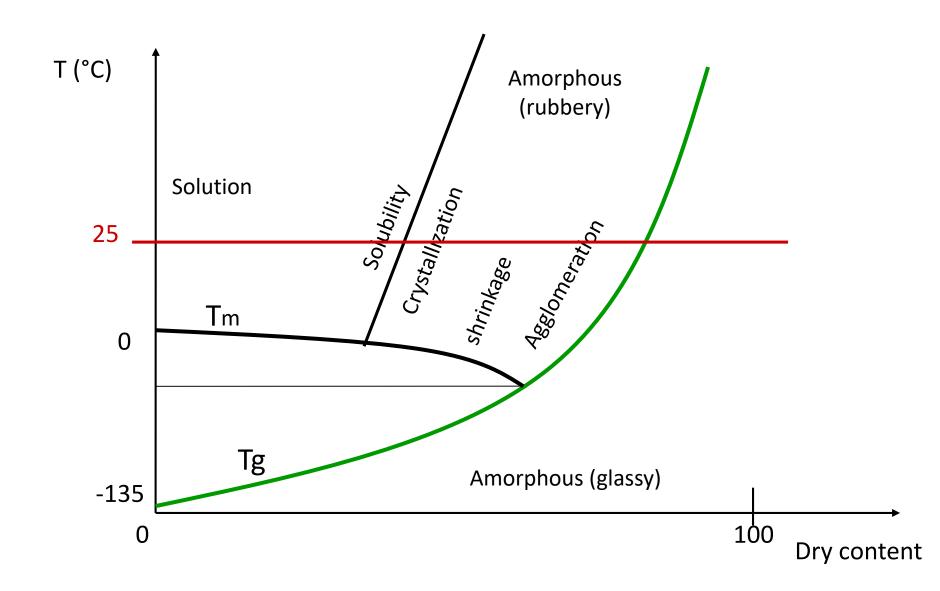

HOW TO ADAPT PACKAGING DESIGN TO FOOD PRODUCT SPECIFICATIONS?

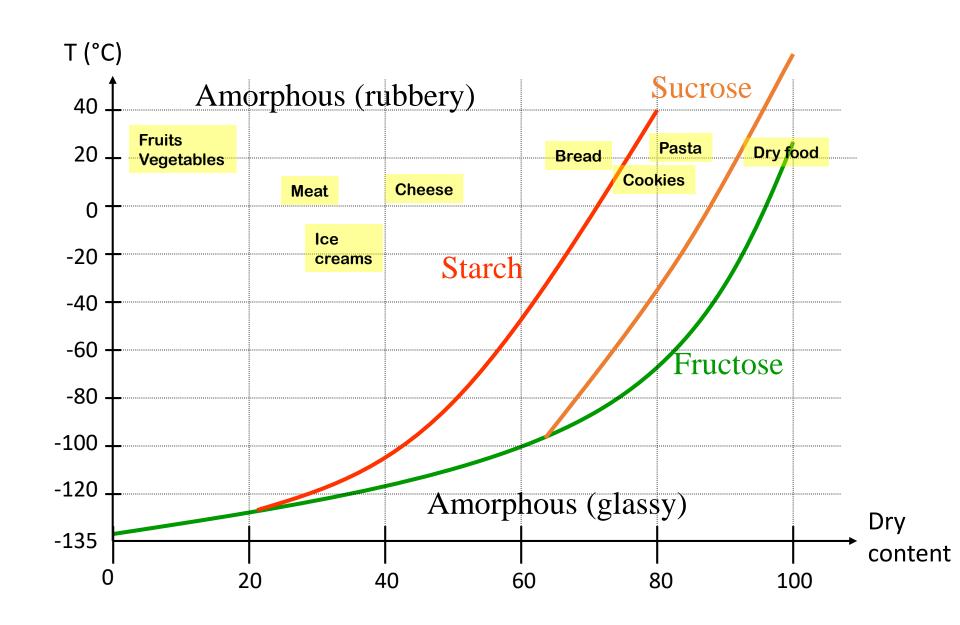




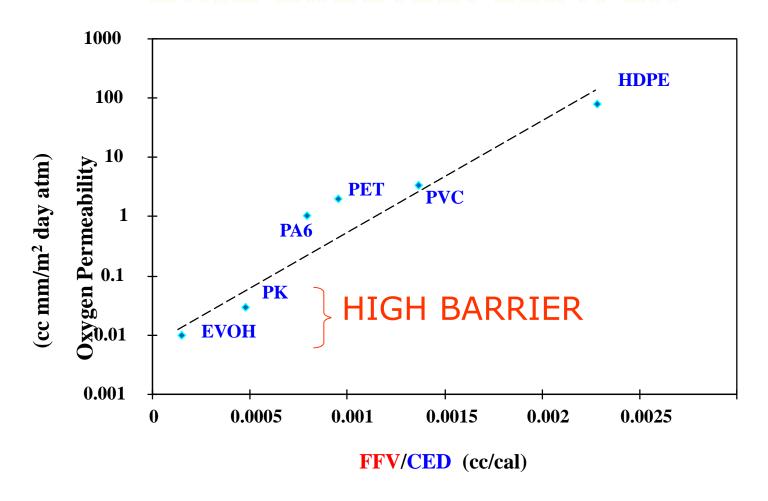
FOOD PRODUCT DESIGN



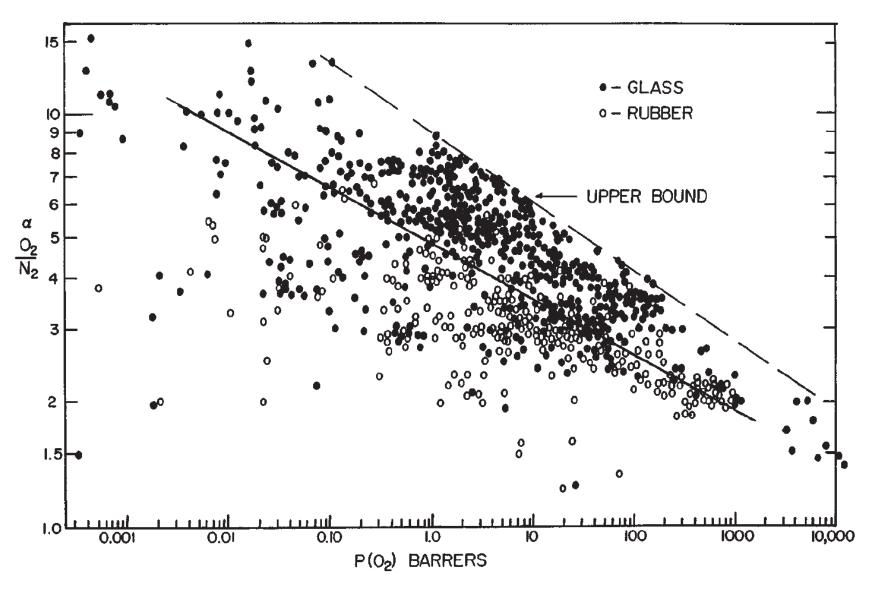



PACKAGING ISSUES

Relative Water content Reaction rate



Global Food Stability Map (adapted from Labuza et al., 1969)



HIGH BARRIER: FFV/CED

SELECTIVITY

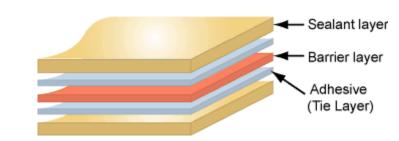
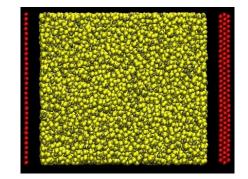
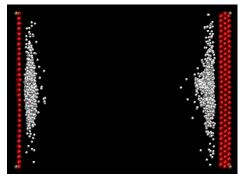


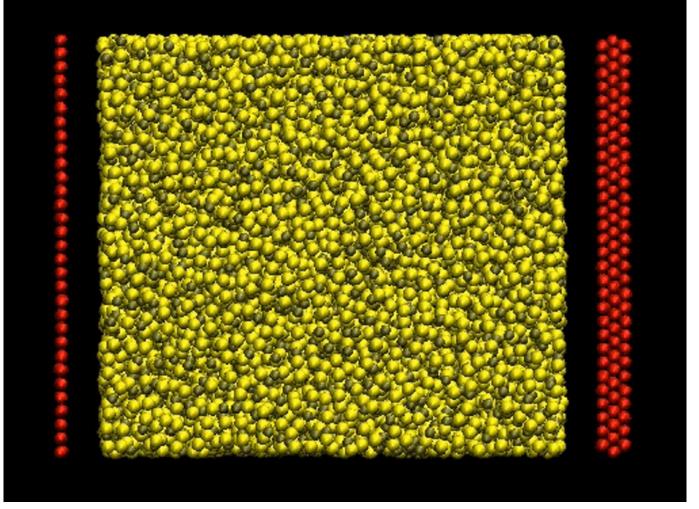
FIG. 22-73 Plot of separation factor versus permeability for many polymers, O_2/N_2 . Abscissa—"Fast Gas Permeability, $\rho(O_2)$ Barrers." Ordinate—"Selectivity, α (O_2/N_2)."

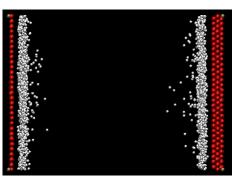
BARRIERS TO GASES

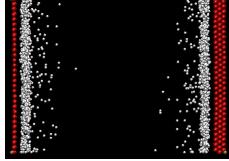
MULTILAYER MATERIALS

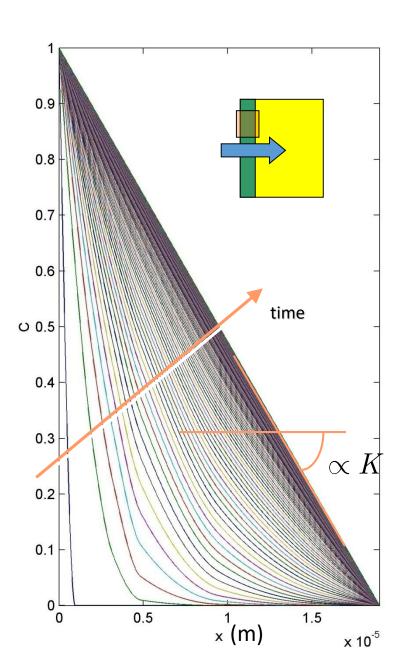

It is well known that traditional polymers are permeable to gazes such as oxygen, CO_2 , vapor This property can become critical for food conservation or storage of gaseous beverages. This is the reason why, in most of the cases, multilayers structures are used. They are composed of a core barrier material and inert outerlayers like polyolefin. Typical Barrier materials are highly crystalline like EVOH, Polyamide, polyester. Aluminium foil or Carton can also be used (example Tetrapak).

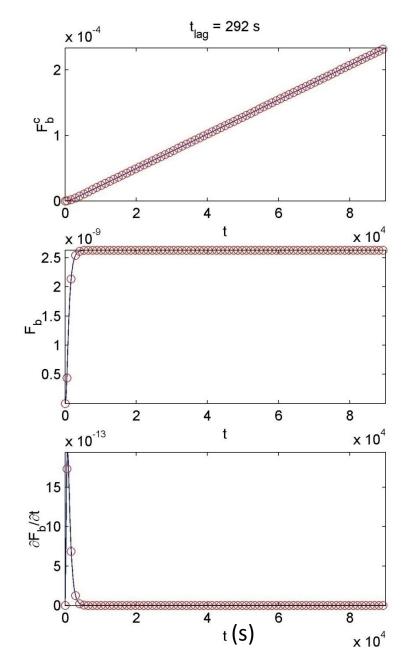


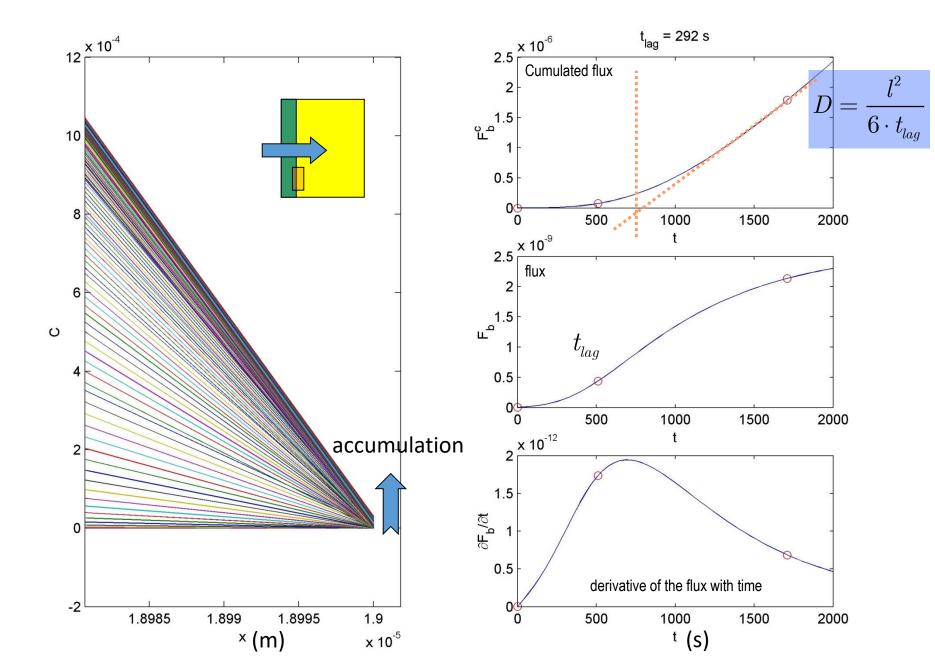

MATERIALS	Applications	Recyclability
PA/PE	Applications: ham, meat cheese, pasta PA provides oxygen barrier and outer abrasion resistance whereas PE provides sealability and flexibility.	blends require to be compatibilized
PA/EVOH/PE	PA6 provides mechanical strength and abrasion resistance, EVOH provides oxygen barrier, PE provides sealability and protects EVOH against moisture.	

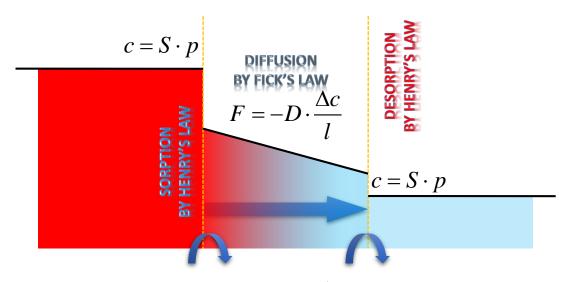

SORPTION AND DIFFUSION OF HE


IN ENTANGLED POLYMERS









gas	M (g·mol⁻¹)	velocity @0°C (m·s ⁻¹)	velocity @15°C (m·s ⁻¹)	velocity @25°V (m·s ⁻¹)
O ₂	32	425	436	444
N ₂	28	454	467	475
He	4	1202	1256	1256.2
CO ₂	44	363	372	379
H2O	18	567	582	592
Ait	28.8	448	460	461

$$F = -D \cdot S \cdot \frac{\Delta p}{l} = \frac{q}{A \cdot t}$$

$$P = D \cdot S \sim \left[\frac{L^2}{\theta} \right] \cdot \left[\frac{\theta^2}{L^2} \right] \sim [\theta] \text{ s in SI}$$

Units of permeability, permeance, and Gas Transmission Rate

		Common Units	Sŧ	Fundam	ental dimension
Amount of mass	q	g, cm ³ (STP), mol	kg	M	Mass
Thickness	Ì	cm/ mil	m	L	Length
Time	ŧ	h, d	s	θ	Time
Area	Α	cm ² , in ²	\mathbf{m}^2	L^2	Length
Partial pressure	Þ	atm. psi, mmHg	Pa	F/L ²	Force/length

$$P_T = \frac{L_T}{\Re_T} = \frac{\sum\limits_{i=1}^n l_i}{\sum\limits_{i=1}^n \Re_i} = \frac{\sum\limits_{i=1}^n l_i}{\sum\limits_{i=1}^n \frac{l_i}{P_i}}$$

Thickness (µm)	P _i at 25°C	Ep (kcal/mol)
18	1.900	10.2
10	25.0	10.5
20	620	11.5
	18 10	10 25.0

$$L_T = 18 + 10 + 20 = 48 \mu m$$

$$\sum_{i=1}^{3} \frac{\ell_{i}}{P_{i}} = \frac{\ell_{1}}{P_{1}} + \frac{\ell_{2}}{P_{2}} + \frac{\ell_{3}}{P_{3}} = \frac{18}{1900} + \frac{20}{25} + \frac{20}{620} = 0.4417 \frac{m^{2} \cdot d \text{ kPa}}{cc}$$

$$P_{T} = \frac{48}{0.4417} = 109 \frac{\text{cc} \cdot \mu \text{m}}{\text{m}^{2} \cdot \text{d} \cdot \text{kPa}}$$

Permeability of some polymers at $25^{\circ} \, \mathrm{C}$

Polymer	Permeant	10 ¹⁵ Permeability (kg m ⁻¹ kPa ⁻¹ s ⁻¹)	$10^{12} Diffusivity (m2 s-1)$	10 ³ Solubility (kg m ⁻³ kPa ⁻¹)
PA 6	Nitrogen	0.023	0.025	0.94
PETP	Nitrogen	0.063	0.13	0.48
PVC	Carbon dioxide	0.52	0.21	2.5
PIB	Nitrogen	3.1	4.5	0.69
	Carbon dioxide	77	5.8	13
CR	Nitrogen	11	25	0.44
	Carbon dioxide	300	24	16
NR	Nitrogen	76	110	0.69
	Carbon dioxide	1900	110	18
	n-Propane	2500	21	120
HDPE	Helium (30°C)	1.9	360	0.0055
	Oxygen (30°C)	5.4	22	0.25
	Nitrogen (30°C)	1.7	12	0.14
	Carbon dioxide	31	16	2.0
LDPE	Isobutene (30°C)	680	4.7	140
	n-Hexane (30°C)	6200	2.5	2500
	Water	540	23	24

ADDITIVES

THERMOPLASTICS, ELASTOMERS

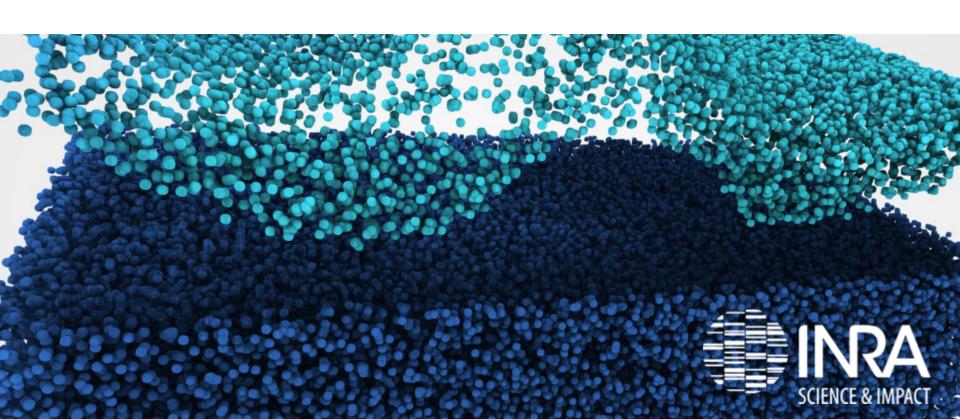
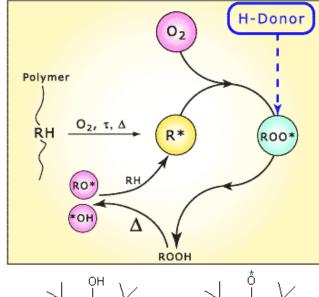


 Table 16.13
 Examples of Processing and Service Aids Used in Food-Packaging Materials

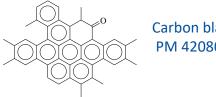

Technical function	Example	Use level, wt%, polymer
Antioxidant	Tetrakis[methylene (3,5-di- <i>tert</i> -butyl-4-hydroxyhydrocinnamate)]methane	0.25 (Polystyrene)
	Tris(2,4-di- <i>tert</i> -butylphenyl) phosphite	0.2 (Polyolefins)
Stabilizer	Di(n-octyl)tin S, S'-bis(isooctylmercaptoacetate)	1.5 (PVC)
	Epoxidized soybean oil	6 (PVC)
	Stearoylbenzoylmethane	0.5 (PVC)
	Cuprous iodide	0.01 (Nylon 6,6)
Plasticizer	Di(2-ethylhexyl) phthalate	40 (PVC)
	Di(2-ethylhexyl) adipate	20 (PVC)
	Acetyltributyl citrate	5 (PVDC)
Lubricant	N,N'-Ethylenebisstearamide	1 (PVC)
	Pentaerythritol adipate-stearate	1 (PVC)
Processing agent	Styrene/butadiene/methacrylate copolymer	2 (PVC)
Melt fracture eliminator	Vinylidene fluoride-hexafluoropropylene copolymer	0.1 (Polyethylene)
Slip agent	Fatty acid amides (erucamide, oleamide)	0.2 (Polyolefins)
Antistatic agent	N,N' -Bis (2-hydroxyethyl)alkyl- C_{14-18} -amine	0.15 (Polyolefins)
Blowing agent	Azodicarbonamide	0.15 (Polyethylene)
Antiblock agent	Silica, talc	0.2 (Polyethylene)
Impact modifier	Butadiene/styrene/methacrylate copolymers	10 (PVC)
Clarifying agent	Dibenzylidene sorbitol	0.25 (Polyolefins)
Light stabilizer	2-Hydroxy-4- <i>n</i> -octoxybenzophenone	0.5 (Polyolefins)
	Dimethylsuccinate-(4-hydroxy-2,2,6,6-tetra-methyl-1-piperidyl)-ethanol polycondensate	0.25 (Polyolefins)
Coupling agent	3-(triethoxylsilyl)propylamine	0.5 (Nylon 6,6)
Filler, extender	Calcium carbonate, clay, talc	>5 (Various polymers)
Reinforcing agents	Glass, fiber, mica, calcium silicate	>5 (Various polymers)
Colorant	Titanium dioxide, ferric oxide, carbon black, ultramarine blue, phthalocyanine blue	0.1–5 (Various polymers)

Source: Compiled from FDA (1987) and British Plastics Federation (1980).

COMMON ADDITIVES AND CONCENTRATION RANGES IN INITIAL MATERIALS

	PE	PP	PS	PVC	PET	PVA	PC	Epoxy	PA
Antioxidant	В	В	В	X					В
Heat stabilizer				B/C		В			
UV stabilizer	B/C	B/C	С	С				С	
Antistatic agent	X	X	X	X	X	X	X		X
Shock agent	X	X	X	X	X	X	X		
Initiator			D	D		D			
Catalyst	D	D			D		D		D
Lubricant	X	X	X	X	X			X	
Plasticizer	Α		Α	Α		Α			
Charges	Α	Α	Α	Α	Α	Α	Α	Α	Α

A >10 000 mg·kg⁻¹ – B = 100-5000 mg·kg⁻¹ – C = 100-500 mg·kg⁻¹ D = 1-100 mg·kg⁻¹ – E < 1 mg·kg⁻¹, x ou X variable amounts (with x>X),


The 2,6-ditert-butyl-4-<u>hydroxytoluen</u> (BHT, B12<u>1</u>) is the simplest phenoli antioxidant. It yields a stable phenox radical i) by mesomery, ii) steric effect due to large tert-butyl, and ii captodative effect.

	nom	CAS Formule M (g∙moſ¹)	Structure 3D	nom	CAS Formule M (g∙moſ¹)	Structure 3D
	2,6-Di(tert- butyl)hydroxytoluène (BHT)	128-37-0 C15 H24 O		Acide 3-(1,1- diméthyléthyl)-4- hydroxy-5-méthyl- Benzènepropanoïque	36443-68-2 C34 H50 O8	
		220.35	~~~ %	(Irganox 245)	586.76	
	Monoacrylate de 2,2'- Méthylenebis(4-méthyl- 6-tert-butylphénol) Irganox (3052)	61167-58-6 C26 H34 O3		4,4',4"-[(2,4,6- triméthyl-1,3,5- benzènetriyl)tris(méthy lène)]tris[2,6-bis(1,1- diméthyléthyl)-phénol	1709-70-2 C54 H78 O3 775.20	
	2-méthyl-4,6- bis[(octylthio)méthyl]-	110553-27- 0 C25 H44 O S2	and the same	(Irganox 1330) Isocyanurate de s- Triazine- 2,4,6(1H,3H,5H)-trione, 1,3,5-tris(3,5-di-tert- butyl-4-hydroxybenzyl)-	27676-62-6 C48 H69 N3 O6	
	phénol (Irganox 1520)	424.75		(8CI); 1,3,5-Tri(3,5-di- tert-butyl-4- hydroxybenzyle) (Irganox 3114)	784.08	
	3,4-dihydro-2,5,7,8- tetraméthyl-2-(4,8,12- triméthyltridecyl)- 2H-1- Benzopyran-6-ol (Irganox 231)	59-02-9 C29 H50 O2 430.71		Benzène propanoate de 3,5-bis(1,1-diméthyléthyl)-4-hydroxy-, 1,1'-[2,2-bis[[3-[3,5-bis(1,1-diméthyléthyl)-4-hydroxyphényl]-1-oxopropoxy]méthyl]-1,3-propanediyle] (Irganox 1010)	6683-19-8 C73 H108 O12 1177.63	
	1,1-Bis(3,5-di-tert-butyl- 2- hydroxyphényl)éthane (Isonox 129)	35958-30-6 C30 H46 O2 438.68		bis[2,4-bis(1,1- diméthyléthyl)-6- méthylphényl] éthyl ester (Irgafos 38)	145650-60-8 C32 H51 O3 P 514.72	
	2,6-Di-tert-butyl-4- (octadécanoxycarbonylé thyl)phénol (Irganox 1076)	2082-79-3 C35 H62 O3 530.86		2,4,8,10-Tetraoxa-3,9- diphosphaspiro[5.5]un décane, 3,9-bis[2,4- bis(1,1- diméthyléthyl)phénoxy]- (Ultranox 626,640)	26741-53-7 C33 H50 O6 P2 604.69	wind of
ne olic oxy ect	Propionate de 3, 3'- thiobis-, didodécyle (Irganox 800)	123-28-4 C30 H58 O4 S 544	William Control of the Control of th	Diphosphite de Bis(2,6- di-tert-butyl-4- méthylphényl)pentaéry thritol (Mark PEP 36)	80693-00-1 C35 H54 O6 P2 632.75	
iii)	3,5-bis-{1, 1- diméthyléthyl)-4- hydroxynenzène propionate d'hydrazine (Irganox 1024)	32687-78-8 C34 H52 N2 O4 552.79	4	1,1',1"- Phosphite de 2,4-bis(1,1- diméthyléthyl)-Phénol (Irgafos 168)	31570-04-4 C42 H63 O3 P 646.92	

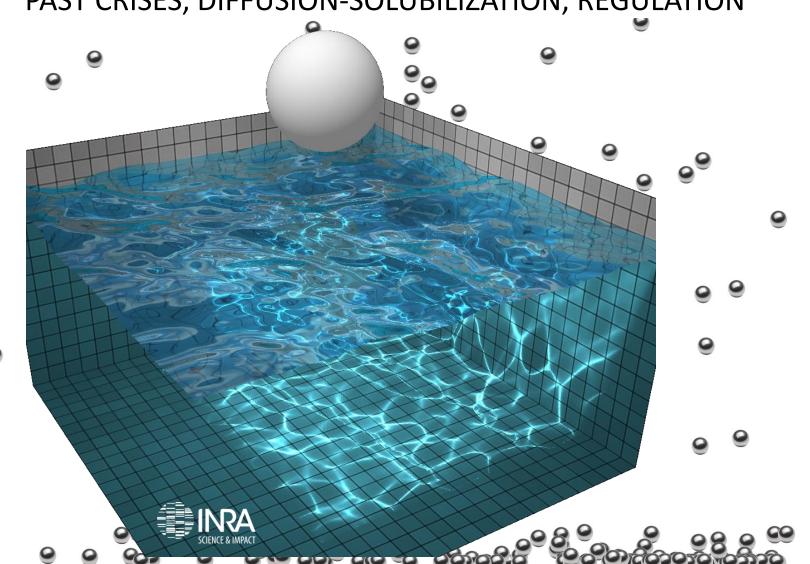
nom	CAS Formule M (g·moſ¹)	Structure 3D	nom	CAS Formule M (g·moſ¹)	Structure 3D
Acide 4 <i>H-</i> 1-	248595-13- 3	. 2 2	Adipate de Di(2-	103-23-1	
Benzopyran-2- carboxylique	C18 H20 O5		éthylhexyle (DEHA)	C22H42O4	30. 35
,,	316.35	2	(==::::,)	370.57	
4-	6160-78-7	2		77-90-7	. 3.2%
Methylumbelliferyl- beta-D-	C16H18O8		Citrate de tributyl- acétyle	C20 H34 O8	
galactopyranoside	338.31	Jan Sala	dectyle	402.88	
2-	117-81-7				
diéthylhexyl)phtalat e	C24H38O4				
(DEHP)	390.56	and the second		-	
(DEHP)	CRINIAN CRINIAN RUPTORS		GING FIL	dispenser & Est	
		B	and the second		

test containers with red drink after three days of UV exposure.

Benzo[a]pyrene,

carcinogenic impurity (< 0,25 mg/kg C)

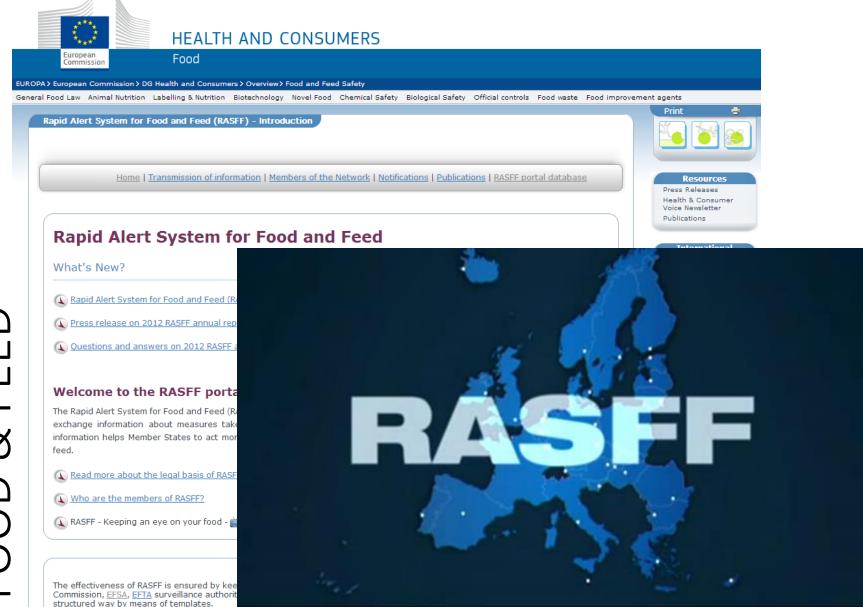
specifications for the HAP



	nom	CAS Formule M (g∙moſ¹)	Structure 3D	nom	CAS Formule M (g∙moſ¹)	Structure 3D
	2-Hydroxy-4- methoxybenzophénone (Chimassorb 90)	131-57-7 C14 H12 O3 228.24	zpop.	Acide 3,5-bis(1,1- diméthyléthyl)-4-hydroxy- benzoïque (Cyasorb 2908)	67845- 93-6 C31 H54 O3 474.76	* The second
8	1-(2-Hydroxyéthyl)- 2,2,6,6-tetraméthyl-4- hydroxypiperidine (Tinuvin 622)	52722-86-8 C11 H23 N O2 201.31		Décanoate de 1,10-bis(2,2,6,6- tetraméthyl-4-pipéridinyle) (Tinuvin 770)	52829- 07-9 C28 H52 N2 O4 480.72	********
olack 80	2-(5-chloro-2H- benzotriazol-2-yl)-6- (1,1-diméthyléthyl)-4- méthyl-Phénol (Tinuvin 326)	3896-11-5 C17 H18 Cl N3 O 315.80	Sport of the	Didécanoate de 1,10- bis(1,2,2,6,6-pentaméthyl-4- piperidinyle) (Tinuvin 292)	41556- 26-7 C30 H56 N2 O4 508.78	
	2-(2H-benzotriazol-2- yl)-4,6-bis(1,1- diméthyléthyl)-Phénol (Tinuvin 320)	3846-71-7 C20 H25 N3 O 323.43		Poly[[6-[(1,1,3,3- tetraméthylbutyl)amino]-1,3,5- triazine-2,4-diyl][(2,2,6,6- tetraméthyl-4- piperidinyl)imino]-1,6- hexanediyl[(2,2,6,6-tetraméthyl- 4-piperidinyl)imino]] (Chimassorb 944)	71878- 19-8 (C35 H66 N8)n	
	2-hydroxy-4-(octyloxy)- (6CI,8CI); 2-Benzoyl-5- octyloxyphénol benzophénone (Chimassorb 81)	1843-05-6 C21 H26 O3 326.43		Didécanoate de 1,10-bis[2,2,6,6- tetraméthyl-1-(octyloxy)-4- piperidinyle] (Tinuvin 123)	122586- 52-1 C44 H84 N2 O6 737.15	still Beetle British
-	2,2'-(2,5- thiophénediyl)bis[5- (1,1-diméthyléthyl)- Benzoxazole (Uvitex OB55)	7128-64-5 C26 H26 N2 O2 S 430.56		N2,N2'-1,2-ethanediylbis[N2-[3- [[4,6-bis[butyl(1,2,2,6,6- pentaméthyl-4- piperidinyl)amino]-1,3,5-triazin- 2-yl]amino]propyl]-N4,N6- dibutyl-N4,N6-bis(1,2,2,6,6- pentaméthyl-4-piperidinyl)- 1,3,5-Triazine-2,4,6-triamine (Chimassorb 119)	106990- 43-6 C132 H250 N32 2285.61	
	2-(3'-tert-Butyl-2'- hydroxy-5'-(2- octyloxycarbonyléthyl)p hényl)benzotriazole (Tinuvin 99)	84268-23-5 C27 H37 N3 O3 451.60	TO THE MARKET			

MIGRATION ISSUES

PAST CRISES, DIFFUSION-SOLUBILIZATION, REGULATION


http://ec.europa.eu/food/food/rapidalert/index en.htm

Site Map | What's New | A to Z Index | Contact | English (en)

Notifications List

New Search

Notifications list: 9 results

Search criteria

Subject *THIOXANTHONE* | Product type food contact material | Hazard category migration

Туре

FCM

FCM

XML 🚔

<< First <<

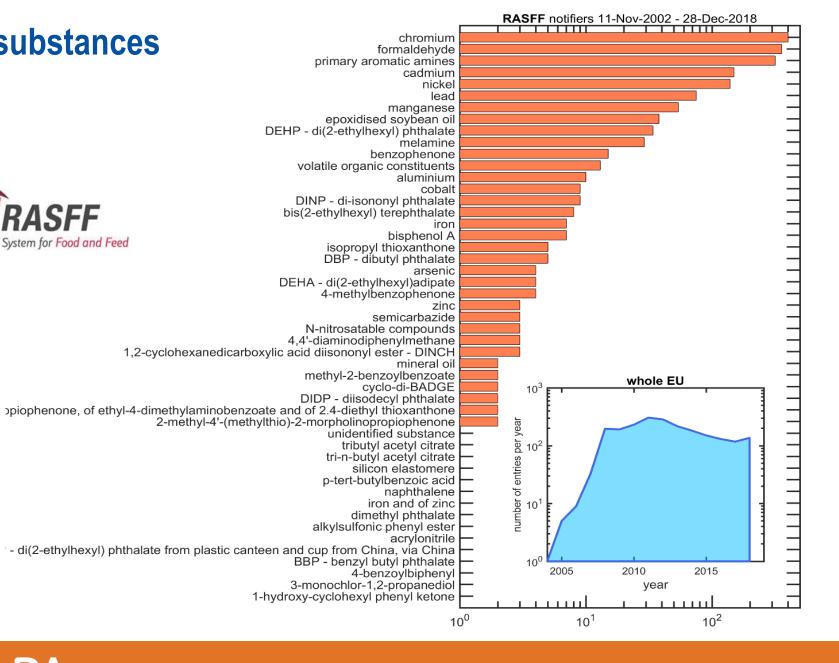
<< Previous 100 << Notifications 1 to 9 of 9 >> Next 100 >>

>> Last >>

	Classification	Date of case	Last change	Reference	Country	Subject	Product Catego
1.	information for attention	10/03/2011	16/03/2011	2011.0316	DE	migration of 2-methyl-4'-(methylthio)-2-morpholinopropiophenone, of ethyl-4-dimethylaminobenzoate and of 2.4-diethyl thioxanthone (DETX) (sum 685 µg/kg - ppb) from printing ink on drinking cups from Germany	food contact materials
2.	information for follow-up	21/01/2011	14/03/2011	2011.0088	DE	migration of 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (54 µg/kg - ppb) and of 2.4-diethyl thioxanthone (DETX) (91 µg/kg - ppb) from plastic mugs from Greece	food contact materials
3.	information for attention	11/02/2011	10/03/2011	2011.0175	DE	migration of 2-methyl-4'-(methylthio)-2-morpholinopropiophenone, of ethyl-4-dimethylaminobenzoate and of 2.4-diethyl thioxanthone (DETX) (sum = 160) from printing on plastic cups from Germany	food contact materials
						migration of 2-methyl-4'-(methylthio)-2-morpholinopropiophenone	
4.	information	21/12/2010	10/03/201			Notification detail - 20	111 0316
5.	information	18/03/2010	10/03/201	grau	dieth	nethyl-4'-(methylthio)-2-morpholinopropiophenone yl thioxanthone (DETX) (sum 685 µg/kg - ppb) fron	
5.	information	18/03/2010	10/03/201	graa	dieth Re	ryl thioxanthone (DETX) (sum 685 μg/kg - ppb) from eference: 2011.0316	
5. 6.	information	18/03/2010 31/07/2009	10/03/201		dieth Re Notificat	yl thioxanthone (DETX) (sum 685 μg/kg - ppb) fron	
					dieth Ro Notificat Last	ryl thioxanthone (DETX) (sum 685 μg/kg - ppb) from eference: 2011.0316 ion date: 10/03/2011	n printing ink on drinking cups f
					dieth Re Notificat Last Notificat	ryl thioxanthone (DETX) (sum 685 μg/kg - ppb) from eference: 2011.0316 ion date: 10/03/2011 t update: 16/03/2011	n printing ink on drinking cups f
6.	alert	31/07/2009	10/03/201		dieth Ro Notificat Last Notificat Action	eference: 2011.0316 ion date: 10/03/2011 t update: 16/03/2011 ion type: food contact material - information for attention - official	n printing ink on drinking cups f
6.	alert information	31/07/2009	10/03/201		dieth Ro Notificat Last Notificat Action	ryl thioxanthone (DETX) (sum 685 µg/kg - ppb) from eference: 2011.0316 ion date: 10/03/2011 t update: 16/03/2011 ion type: food contact material - information for attention - official on taken: withdrawal from the market ion from: Germany (DE)	n printing ink on drinking cups f
6. 7.	alert information alert	31/07/2009 11/04/2006 17/01/2006	10/03/201 02/02/200 02/02/200		Reconstruction Recons	ryl thioxanthone (DETX) (sum 685 µg/kg - ppb) from eference: 2011.0316 ion date: 10/03/2011 t update: 16/03/2011 ion type: food contact material - information for attention - official on taken: withdrawal from the market ion from: Germany (DE)	n printing ink on drinking cups f
6. 7.	alert information alert	31/07/2009 11/04/2006 17/01/2006	10/03/201 02/02/200 02/02/200	-	dieth Re Notificat Last Notificat Actic Notificati Distributio	ryl thioxanthone (DETX) (sum 685 µg/kg - ppb) from eference: 2011.0316 ion date: 10/03/2011 it update: 16/03/2011 ion type: food contact material - information for attention - official on taken: withdrawal from the market ion from: Germany (DE) in status: distribution restricted to notifying country	n printing ink on drinking cups f
6. 7.	alert information alert	31/07/2009 11/04/2006 17/01/2006	10/03/201 02/02/200 02/02/200	-	dieth Ro Notificat Last Notificat Actic Notificati Distributio	eference: 2011.0316 ion date: 10/03/2011 t update: 16/03/2011 ion type: food contact material - information for attention - official on taken: withdrawal from the market ion from: Germany (DE) in status: distribution restricted to notifying country Product: printing ink on drinking cups	n printing ink on drinking cups f

zoate and of 2.4from Germany

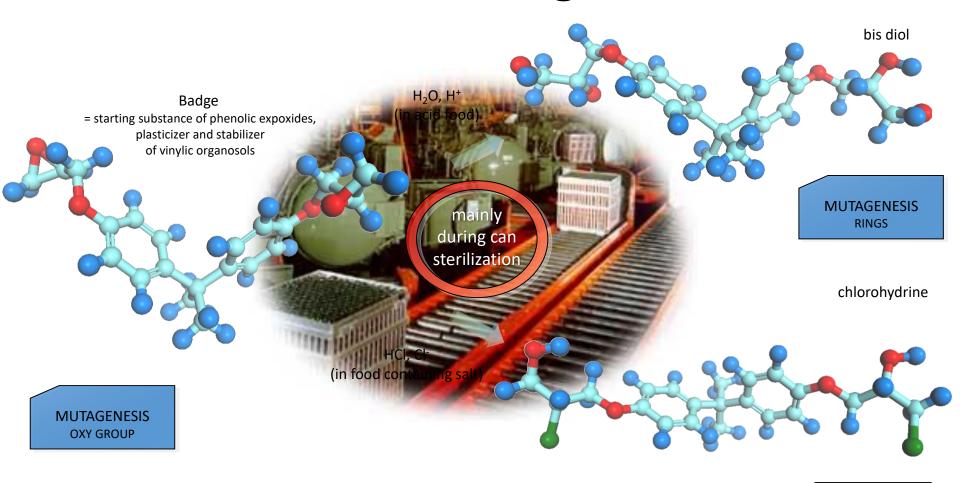
RASFF


ystem for Food and Feed

Hazards:

Substance / Hazard	Category	Analytical result	Units	Sampling date
migration of 2-methyl-4'- (methylthio)-2- morpholinopropiophenone	migration			
migration of 2.4-diethyl thioxanthone (DETX)	migration	sum 685	μg/kg - ppb	
migration of ethyl-4- dimethylaminobenzoate	migration			16/10/2010

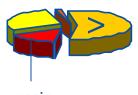
List of substances



BISPHENOLS

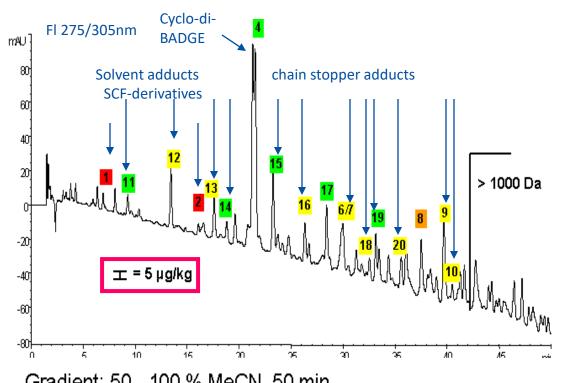
EPOXIDE=reactive migrants

MUTAGENESIS CHLOROHYDRINES


Cottier 1997, 1999, Paseiro 1995, Philo 1997

SCREENING OF MIGRANTS FROM CAN COATINGS < 1000 Da

SAMPLE: STANDARD EPOXY-COATING, MECN-EXTRACT



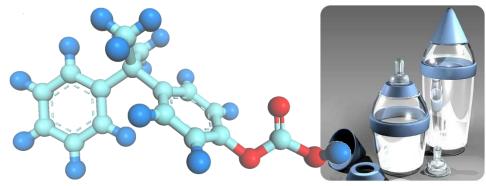
M +1 Substances

resin components < 1000 Da

> Structured Non-Target'-Screening

Gradient: 50 - 100 % MeCN, 50 min

# IVI T I		IVI + I	Substances				
			(originated from the resin)				
	1	359	BADGE·H ₂ O				
	2	341	BADGE				
	3	643	BADGE(n=1)·H ₂ O				
	4	569	Cyclo-DiBADGE				
	5	625	BADGE(n=1)				
	6	927	BADGE(n=2)· H_20				
	7	491	BADGE-tBuPh*				
	8	909	BADGE(n=2)				
	9	775	BADGE(n=1)-tBuPh				
	10	641	BADGE-2tBuPh				
	11	477	BADGE·H2O·BuEtOH**				
	12	403	BADGE-EG*** (+)				
	13	459	BADGE-BuEtOH				
	14	509	BADGE·H2O·tBuPh				
	15	577	BADGE-2BuEtOH				
	16	687	BADGE(n=1)-EG (+)				
	18	743	BADGE(n=1)-BuEtOH				
	19	609	BADGE-BuEtOH-tBuPh				
	20	971	BADGE(n=2)-EG (+)				
	*	tBuPh	tertButylphenol (chain stopper)				
	**	BuEtO	H Butoxyethanol				

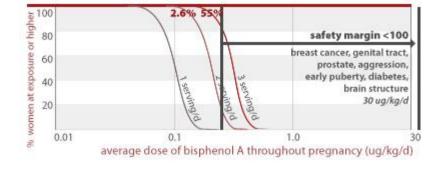

Ethyleneglycol

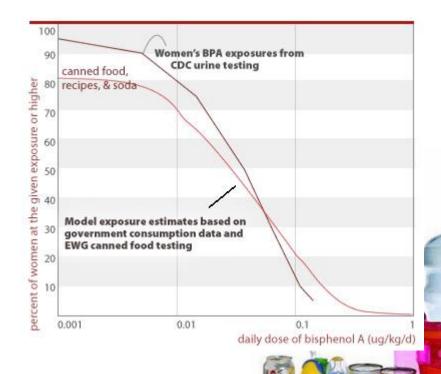
Further confirmations are necessary

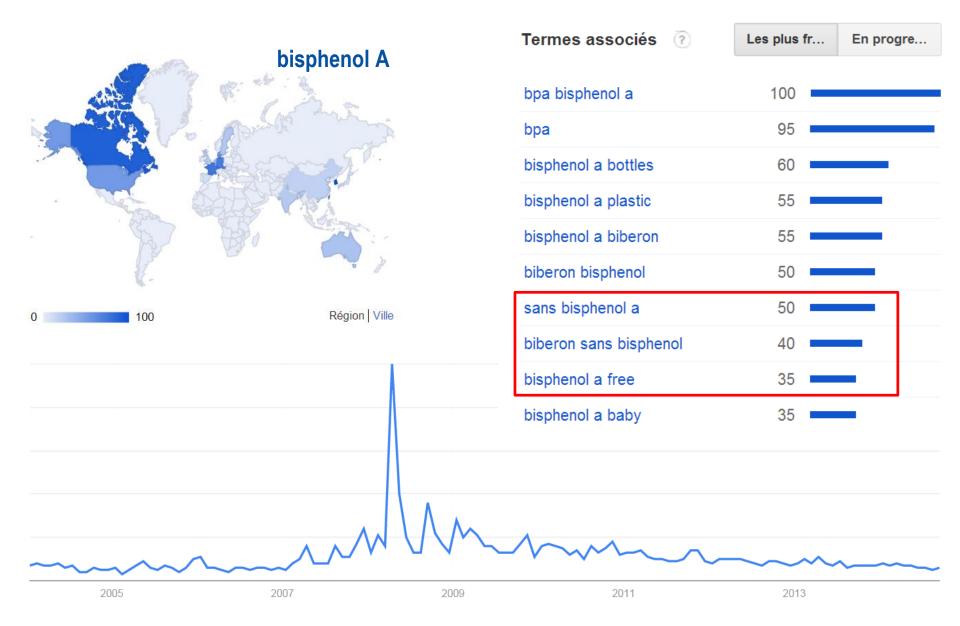
Bisphenol A Exposure Causes Meiotic Aneuploidy in the Female Mouse

Background: There is increasing concern that exposure to man-made substances that mimic endogenous hormones may adversely affect mammalian reproduction. Although a variety of reproductive complications have been ascribed to compounds with androgenic or estrogenic properties, little attention has been directed at the potential consequences of such exposures to the genetic quality of the gamete.

Results: A sudden, spontaneous increase in meiotic disturbances, including aneuploidy, in studies of oocytes from control female mice in our laboratory coincided with the accidental exposure of our animals to an environmental source of bisphenol A (BPA). BPA is an estrogenic compound widely used in the production of polycarbonate plastics and epoxy resins. We identified damaged caging material as the source of the exposure, as we were able to recapitulate the meiotic abnormalities by intentionally damaging cages and water bottles. In subsequent studies of female mice, we administered daily oral doses of BPA to directly test the hypothesis that low levels of BPA disrupt female meiosis. Our results demonstrated that the meiotic effects were dose dependent and could be induced by environmentally relevant doses of BPA.


Conclusions: Both the initial inadvertent exposure and subsequent experimental studies suggest that BPA is a potent meiotic aneugen. Specifically, in the female mouse, short-term, low-dose exposure during the final stages of oocyte growth is sufficient to elicit detectable meiotic effects. These results provide the first unequivocal link between mammalian meiotic aneuploidy and an accidental environmental exposure and suggest that the oocyte and its meiotic spindle will provide a sensitive assay system for the study of reproductive toxins.




PRESENCE IN FOOD

Google Trends – 2003-present

Epilogue

ACTUALITÉ ÉCONOMIE FINANCE PE ENTREPRISE EMPLOI CULTURE ST

Actualité | Photos | Vidéos | Blogs | Express Yourself | Tendances | Elysée 2012

À la une | Politique | Monde | Economie | Société | Education | Médias | High-Tech | Sport | Sciences et si

Actualité > Politique

L'Assemblée unanime interdit les contenants alimentaires avec du bisphénol A

publié le 12/10/2011 à 17:11, mis à jour à 19:23

afp.com/Mychèle Daniau

PARIS - A l'unanimité, l'Assemblée a voté mercredi l'interdiction du bisphénol A dans les contenants alimentaires, objet d'une proposition de loi socialiste soutenue par le gouvernement.

La mesure s'appliquera à compter de 2014, mais dès 2013 pour les contenants alimentaires de produits destinés aux enfants de moins de 3 ans, conformément à un amendement introduit par le ministre de la Santé, Xavier Bertrand, lors des débats jeudi demier.

Le bisphénol A, composant chimique très répandu dans les objets de la

Toutes les dépêches

CAN: le Soudan qualifié, carton plein de la Côte d'Ivoire dans le

Wall Street finit en légère baisse: Dow Jones -0,05%, Nasdag -0,16%

Mercredi 26 décembre 2012 / N° 300

I Ol no 2012-1442 du 24 décembre 2012 visant à la suspension de la fabrication, de l'importation, de l'exportation et de la mise sur le marché de tout conditionnement à vocation alimentaire contenant du bisphénol A.

- « Cette suspension prend effet, dans les mêmes conditions, au 1er janvier 2015 pour tout autre conditionnement, contenant ou ustensile comportant du bisphénol A et destiné à entrer en contact direct avec des denrées alimentaires.
- « Avant le 1er juillet 2014, le Gouvernement remet au Parlement un rapport évaluant les substituts possibles au bisphénol A pour ses applications industrielles au regard de leur éventuelle toxicité.

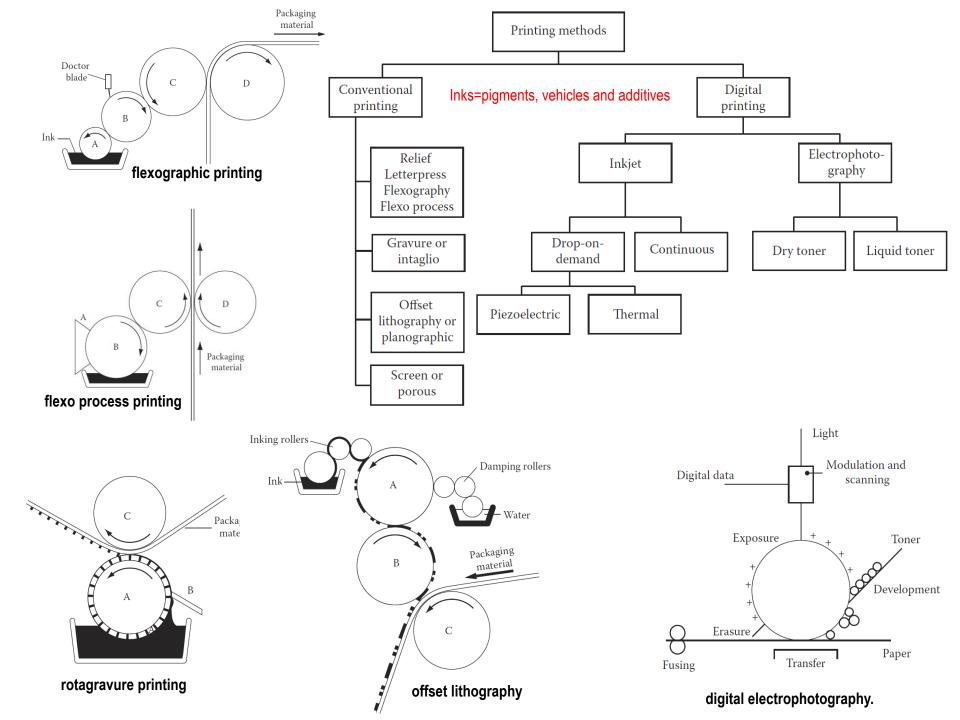
Food and Feed borne crises throughout the food chain

destroy consumer's confidence in food

But what about food packaging

Nonylphenol NP

residues


Semicarb Nice/SEM

Bisphenol A diglycidyl ether (BADGE)

PHOTOINITIATORS

Italian police seize contaminated Nestle baby milk

22 Nov 2005 16:45:09 GMT Source: Reuters

← PREVIOUS | NEXT →

Forest Ranger officials check a package of baby milk made by Swiss food group Nestle in a supermarket in Italy November 22, 2005, Italian police seized around 30 million litres of baby milk produced by Nestle on Tuesday after tests showed traces of ink, and the company said it was recalling the infant food in four European countries. REUTERS/HO

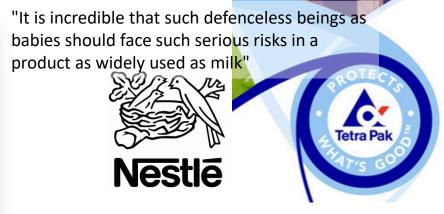
(Adds Tetra Pak comment in paragraph 11)

By Massimiliano Di Giorgio and Isabel Strassheim

ROME/ZURICH, Nov 22 (Reuters) -Italian police seized around 30 million litres of baby milk produced by Swiss food giant Nestle <NESN.VX> on Tuesday after tests showed it was contaminated with traces of ink used in the packaging.

Nestle said the chemical substance was not harmful, but announced it was recalling the infant food in four European countries, including Italy, because of the problem, which related to Tetra Pak cartons.

Italian Agriculture Minister Gianni Alemanno demanded tests to see if babies given the contaminated milk over a prolonged period faced health risks.


"It is incredible that such defenceless

beings as babies should face such serious risks in a product as widely used as milk." Alemanno said in a statement.

Italian officials said they had already seized about 2 million litres of Nestle baby milk earlier this month after finding traces of isopropylthioxanthone (ITX), an ink component used in the offset printing process of the Tetra Pak cartons.

They broadened their net on Tuesday, sweeping hundreds of packets of milk off supermarket shelves and out of depots around Italy. Police said they also searched lorries in their effort to root out the four Nestle products under investigation.

Nestle, the world's biggest food company, said it had decided to recall all liquid infant formula milks packed in offset printed cartons in Italy, France, Spain and Portugal.

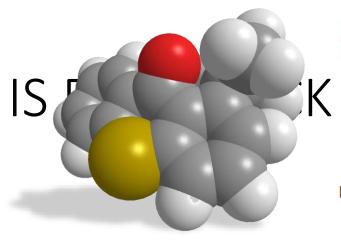
BOTTOM LINE SAFE

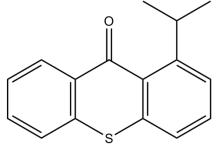
A spokesman at Nestle's corporate headquarters in Switzerland said a new packaging process had been put in place to prevent the contamination and that the recall would not have a significant impact on the company's results at a group level.

Nestle shares were down 0.5 percent at 1615 GMT in a slightly higher overall Swiss market

Tetra Pak spokeswoman Patricia O'Hayer said ITX was not recognised as a toxic substance on any official list and was not on the World Health Organisation lists of toxic substances that should not come into contact with food.

"We have studied the toxicological data available, and that confirms that it is not toxic," she told Reuters.


O'Hayer said Tetra Pak removed the printing technology in question in October to prevent any printing compound, even if not dangerous, from seeping into a product.


"We had no indication that this was in any way a cause for concern," she said.

This is the second time Nestle has run foul of Italian authorities this year.

In October, Italy's antitrust authority fined seven producers of baby formula including Nestle a total of 9.743 million euros for running a cartel in Italy to keep prices much higher than in many European countries.

isopropyl thioxanthone

photoinitiator
used in UV, curing
resins, inks,
coatings and
adhesives
M=241 g·mol-1

December 15, 2005


DETAILS EMERGE IN TAINTED NESTLÉ FORMULA SCANDAL

The discovery of contamination in various Nestlé baby food brands has caused a huge stir in Europe. Millions of litres of formula have been pulled from the shelves and a top official in the Italian government has threatened legal action against the corporation's CEO. It is now clear that the contamination was caused by IsopropilThioxanthone (ITX), a fixative of printing ink used on liquid milk cartons (produced by TetraPack, a large company that serves many other food companies for different kinds of foods and beverages). It is also apparent that Nestlé has been less than responsible is recalling potentially contaminated baby formula, prompting government intervention and seizures of the product. This episode demonstrates yet again Nestlé's willingness to preserve its own profits at the expense of infant health, and the inherent dangers presented by mass-produced baby food.

July 2005: First tests of Nestlé ready-to-feed liquid formula in the Marche region of Italy show contamination by ITX. Further tests were ordered on other Nestlé products: Nidina 1 for infants, Nidina 2 for babies 6 to 12 months, Latte Mio and Mio Cereali for children 1 to 3 years.

RAPPEL

Italian police seize contaminated Nestle baby milk

22 Nov 2005 16:45:09 GMT Source: Reuters

← PREVIOUS | NEXT →

est Ranger officials check a package aby milk made by Swiss food group tle in a supermarket in Italy ember 22, 2005. Italian police

seized around 30 million litres of baby milk produced by Nestle on Tuesday after tests showed traces of ink, and the company said it was recalling the infant food in four European countries. REUTERS/HO

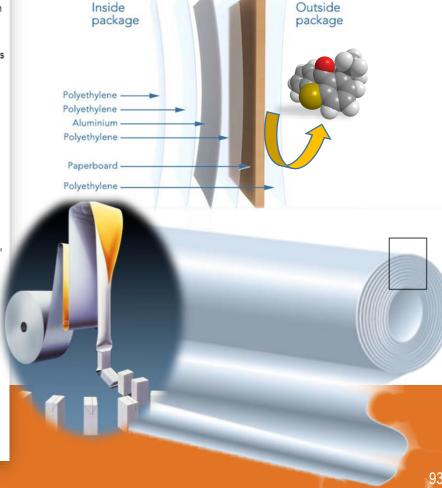
Alemanno said in a statement.

(Adds Tetra Pak comment in paragraph 11)

By Massimiliano Di Giorgio and Isabel Strassheim

ROME/ZURICH, Nov 22 (Reuters) - Italian police seized around 30 million litres of baby milk produced by Swiss food giant Nestle <NESN.VX> on Tuesday after tests showed it was contaminated with traces of ink used in the packaging.

Nestle said the chemical substance was not harmful, but announced it was recalling the infant food in four European countries, including Italy, because of the problem, which related to Tetra Pak cartons.


Italian Agriculture Minister Gianni Alemanno demanded tests to see if babies given the contaminated milk over a prolonged period faced health risks.

"It is incredible that such defenceless beings as babies should face such serious risks in a product as widely used as milk,"

Italian officials said they had already seized about 2 million litres of Nestle baby milk earlier this month after finding traces of isopropylthioxanthone (ITX), an ink component used in the offset printing process of the Tetra Pak cartons.

They broadened their net on Tuesday, sweeping hundreds of packets of milk off supermarket shelves and out of depots around Italy. Police said they also searched lorries in their effort to root out the four Nestle products under investigation.

Nestle, the world's biggest food company, said it had decided to recall all liquid infant formula milks packed in offset printed cartons in Italy, France, Spain and Portugal. "It is incredible that such defenseless beings as babies should face such serious risks in a product as widely used as milk"

Modeling would have been able to predict ITX values in food?

.Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2009, 26(12), 1556-1573.

	Migrant	
	2-ITX	
9	not available	
	Polymer	LDPE††
PARAMETER	notation (unit)	
Thickness	l _P (μm)	50
Volume dilution ratio	L _{F/P} (-)	360
Biot mass number	Bi (-)	10 ³
Contact Time	t (days)	90
Temperature	(°C)	4
Likely initial concentration	$\overline{C}_{i,P}^{\circ}$ a (mg·kg-1)	100 ± 10
Conservative initial concentration ^b	$\left(C_{i,P}^{0}\right)^{\!+}{}^{\mathrm{b}}\left(\mathrm{mg}\!\cdot\!\mathrm{kg}^{\!-\!1}\right)$	300
Likely diffusion coefficient	$\overline{D}_{\scriptscriptstyle i,P}$ ° (m².s-1)	8.4·10 ⁻¹⁶ [7.6·10 ⁻¹⁶ 9.2·10 ⁻¹⁶]
Conservative diffusion coefficient ^d	$D_{i,P}^{+}$ d (m ² .s ⁻¹)	3.9·10 ⁻¹⁴
Likely partition coefficient	$\overline{K}_{i,F/P}$ (-)	1.4·10 ⁻⁹ [3.7·10 ⁻¹⁰ 5.1·10 ⁻⁹]
Conservative partition coefficient	$K_{i,F/P}^+$ (-)	10³

Last

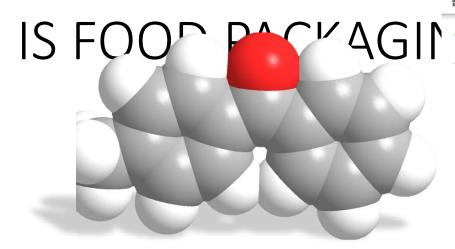
change

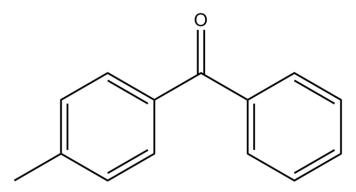
Reference

2005.631

Country

ITALY


Spain


Date of

case 6. 08/09/2005

RASFF Portal

4-methyl benzophenone

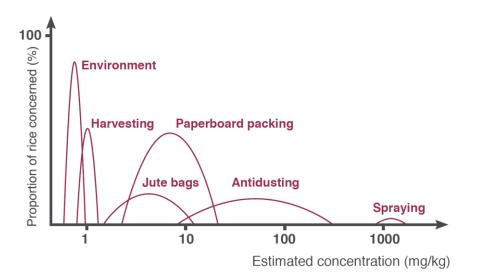
Contact

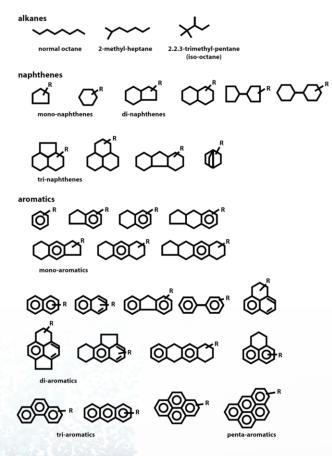
Accueil > Actu, France > Lidl a rappelé des milliers de boîtes de céréales en février

Lidl a rappelé des milliers de boîtes de céréales en février

02/04/2009

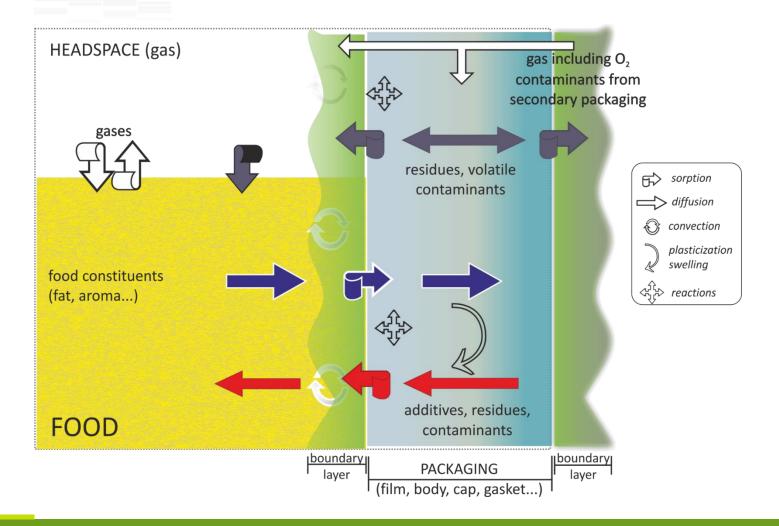
Allez aux commentaires - 🥋 Commenter


Des milliers de paquets de céréales pour le petit déjeuner "muësli" ont été retirés en février des rayons des 1 400 magasins Lidl de France, suite à la contamination de ces céréales par une composante toxique utilisée dans l'encre des emballages, indique, jeudi 2 avril, Lidl. "Nous avons été informés le 6 février par notre maison-mère qu'il fallait retirer de la vente deux références, des muesli au chocolat et des muesli aux fruits. Les marchandises ont été retirées le 9 février", déclare Jérôme Gresland, directeur des achats de Lidl pour la France, confirmant une information du Canard enchaîné. Des sites comme 60 millions de consommateurs ou rappelsproduits.fr permettent aux


consommateurs s'informer sur les produits - steaks hachés avariés, circuits hydrauliques de voiture défectueux, saucisson contenant des salmonelles - rappelés par les constructeurs et fabricants.

Le signalement de la maison-mère était consécutif à une alerte du système d'alerte européen pour les denrées alimentaires (RASFF), après qu'un contrôle sanitaire a mis en évidence en Allemagne la présence de 4-méthyle benzophénone (4-MBP) dans des céréales, a précisé M. Gresland. L'EFSA a fait savoir le 4 mars que "la consommation régulière de produits fortement contaminés" par la molécule incriminée pouvait présenter "dans des cas extrêmes un risque pour certains enfants". La branche française de Lidl a décidé de son propre chef de retirer les produits de ses rayons, "par précaution", a souligné M. Gresland.

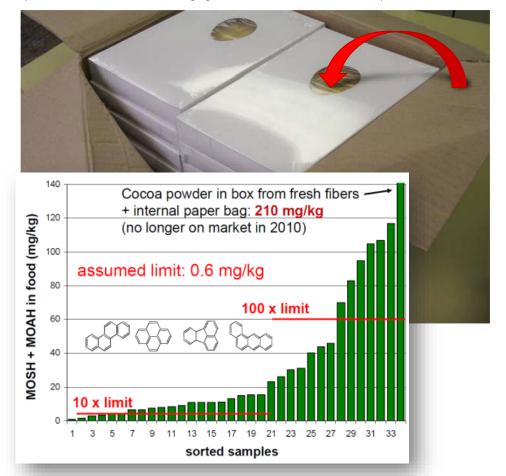
"A aucun moment la Direction générale de la concurrence, de la consommation, et de la répression des fraudes (DGCCRF) ne nous a demandé de procéder à un rappel des produits" déjà vendus, a-t-il dit. "La DGCCRF a pris contact avec nous début mars, trois semaines après le retrait des produits de la vente", a-t-il.



MINERAL OILS

Coupled mass transfer

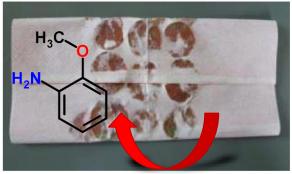
between the food product and the packaging material


CONTEXT: EXAMPLES NOT COVERED BY SPECIFIC MEASURES: NON-

SPECIFICALLY REGULATED MATERIALS, DRY AND AQUEOUS FOOD FALSELY CONSIDERED SAFE

CONTAMINATION OF NODDLES BY RECYCLED FIBERS OF SECONDARY PACKAGING

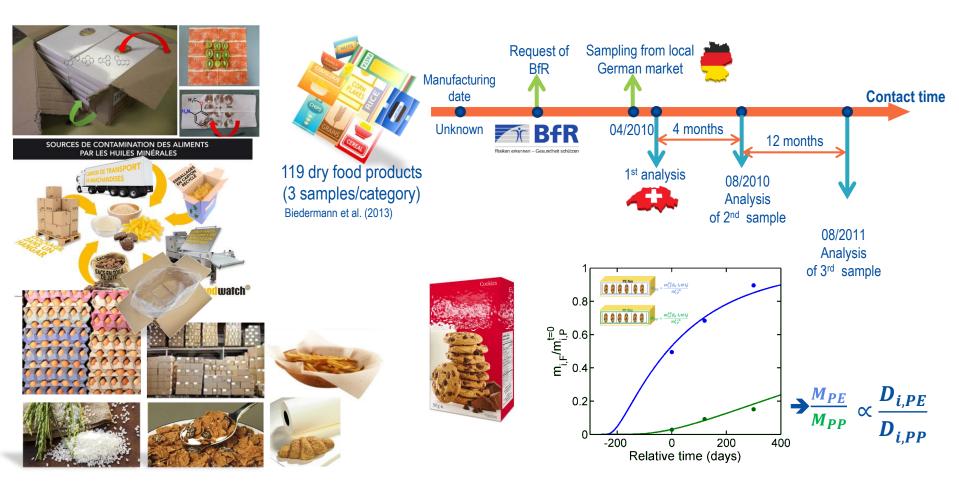
After 65 days of contact, 6.1 mg/kg of paraffins found in noodles stored in boxes in top and bottom positions. Estimated migration at shelf life (2 years): 10 mg/kg


(Biedermann et al., 2011; Packaging Technol & Sci 2011, 24, 281-290)

CONTAMINATION OF FRESH FRUITS BY PRINTED TABLE NAPKIN

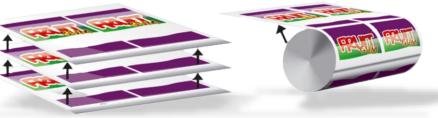
Migration of o-anisidine (primary aromatic amine): printed paper 17.5 μ g/l \rightarrow kiwi: 5.3 μ g/l (migration rate: 17 %) (Helling, 2011)

MOH SURVEY


FOOD WATCH - October 2015

SOURCES DE CONTAMINATION DES ALIMENTS PAR LES HUILES MINÉRALES

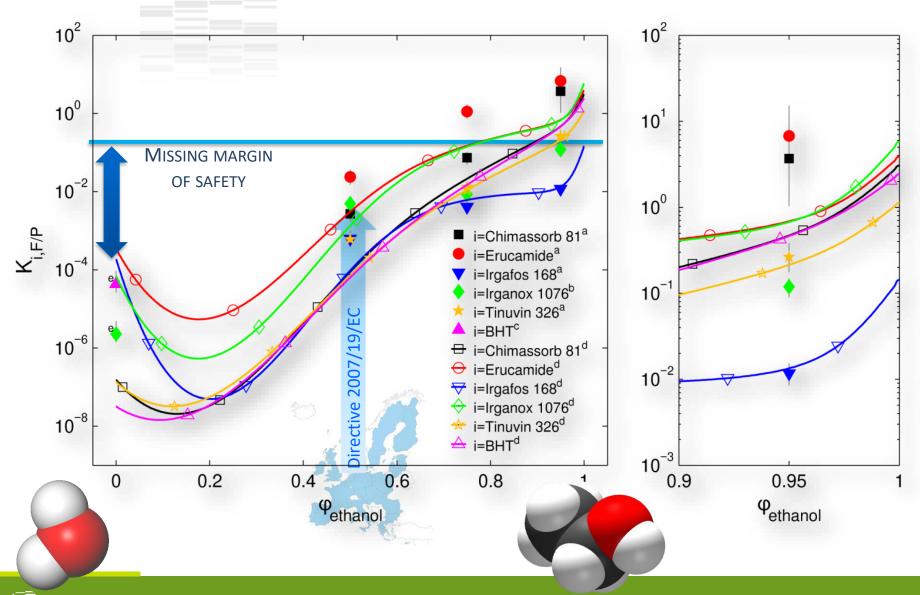
Ulbiquitous contaminants


PRINTING INKS (EUPIA guidelines to be revised)

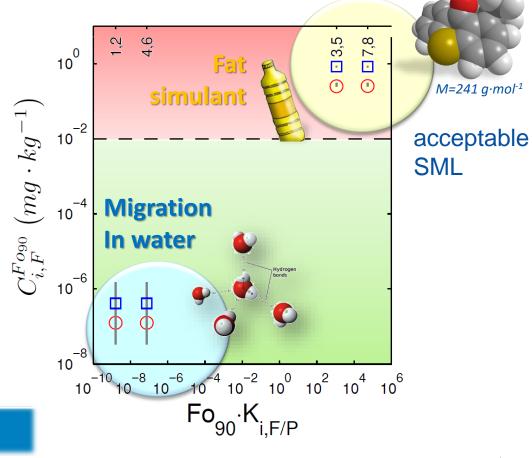
- Exclusion/Negative lists
- Recommended substances
- Purity/traceability requiremd
- Migration (less than 10 ppb for non evaluated substances) and risk assessments
- Inks prepared according to GMP
- No-direct contact with food
- No "visible' Set-off in stacks and reels

MINERAL OILS

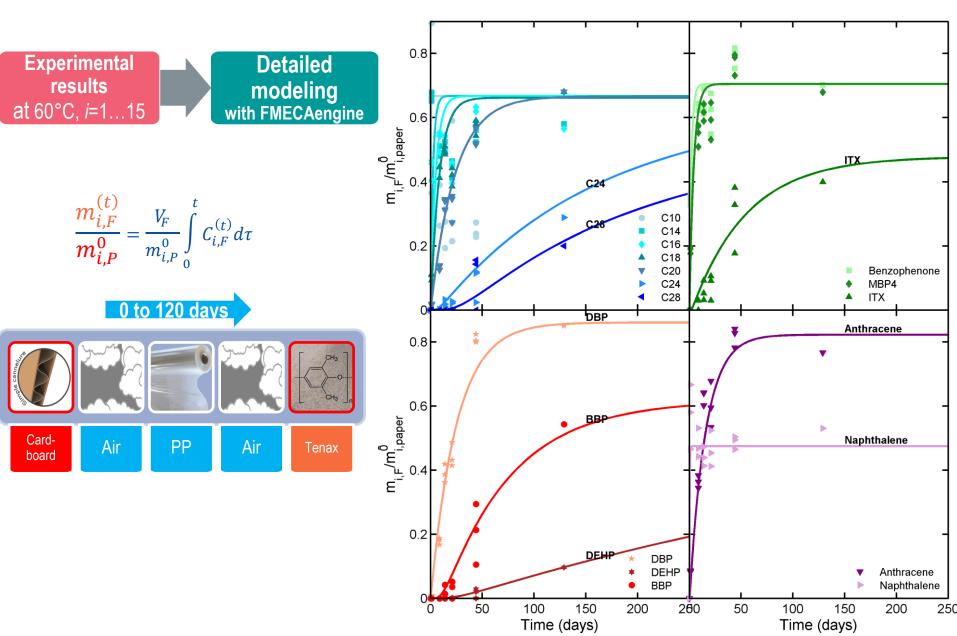
- No recycled paper or paperboard
- No MOSH below C20, migration <2 ppm for C20-C35
- Migration of MOAH (C16-C35)<0.5 ppm
- List of raw materials and production aids
- No holding/reheating above 90°C
- No microwave uses
- With internal bag



PARTITION COEFFICIENTS WITH WATER/ETHANOL AND POLYETHYLENE



MODELING WOULD HAVE BEEN ABLE TO PREDICT ITX VALUES IN FOOD


. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2009, 26(12), 1556-1573.

	2-ITX	
	Homologous migrant [†]	not available
	Polymer	LDPE††
PARAMETER	notation (unit)	
Thickness	l _P (μm)	50
Volume dilution ratio	L _{F/P} (-)	360
Biot mass number	Bi (-)	10 ³
Contact Time	t (days)	90
Temperature	(°C)	4
Likely initial concentration	$\overline{C}_{i,P}^{\circ}$ a (mg·kg-1)	100 ± 10
Conservative initial concentration ^b	$\left(C_{i,P}^{0}\right)^{+}$ b (mg·kg-1)	300
Likely diffusion coefficient	$\overline{D}_{\scriptscriptstyle i,P}$ ° (m².s-1)	8.4·10 ⁻¹⁶ [7.6·10 ⁻¹⁶ 9.2·10 ⁻¹⁶]
Conservative diffusion coefficient	$D_{i,P}^{+}$ d (m ² .s ⁻¹)	3.9·10 ⁻¹⁴
Likely partition coefficient	$\overline{K}_{i,F/P}$ (-)	1.4·10 ⁻⁹ [3.7·10 ⁻¹⁰ 5.1·10 ⁻⁹]
Conservative partition coefficient	$K_{i,F/P}^+$ (-)	10³

	Date of case	Last change	Reference	Country		F0 ₉₀ ·K _{i,F/P}
6.	08/09/2005		2005.631	ITALY		food contact materials
RASFF Portal		migratio Spain	n of isopropyl thioxanthone (250 μ g/l) from packaging of milk for babies from			

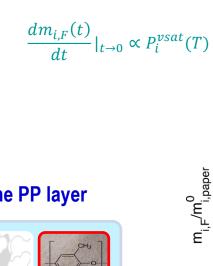
PREDICTIONS vs EXPERIMENTS

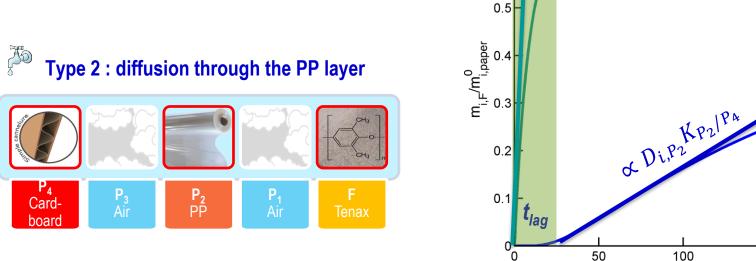
TWO EXTREME CASES

Type 1: desorption in gaseous phase (exponential without delay)

$$\frac{C_{i,P_4}^{t=0}-C_{i,P_4}(t)}{C_{i,P_4}^{t=0}-C_{i,P_4}^{eq}}$$

$$\xrightarrow[t\to 0]{ \frac{\boldsymbol{P_i^{vsat}}(T)V_i\gamma_{i,P_4}^v(T)h_e}{\left(1-\varepsilon_{P_4}\right)RTl_{P_4}} \left(1+K_{P_4/F}L_{P_4/F}\right)t}$$


 $rac{m_{i,F}^{eq}}{m_{i,P_4}^{t=0}} = \left(1 + \sum_{i=1}^{r} rac{1}{K_{i,F/P_j}} rac{l_{P_j}}{l_F}
ight)$


150

t (days)

Type 1 Type 2

200

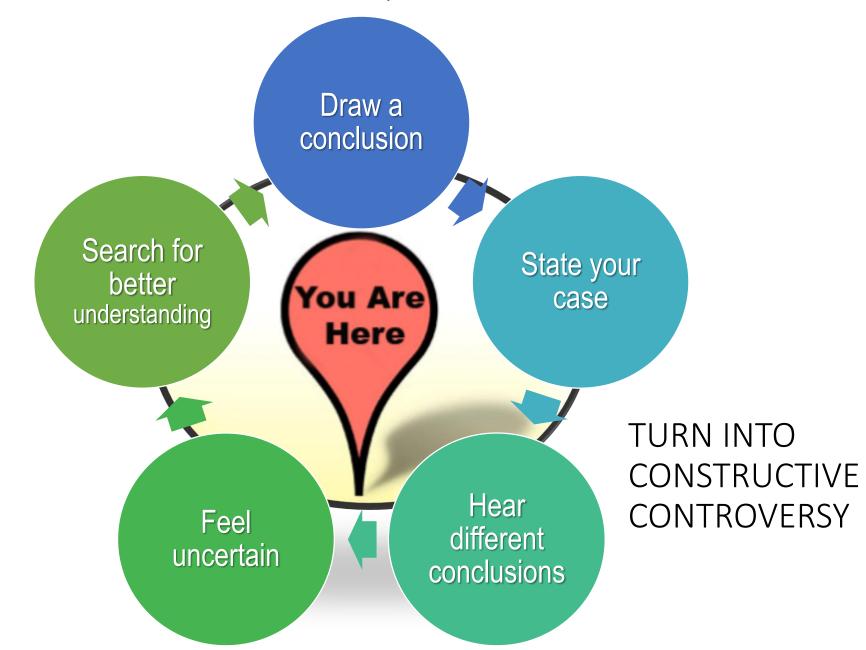
AMBIENT TEMPERATURES

Detailed modeling with FMECAengine

$$\frac{m_{i,F}^{(t)}}{m_{i,P}^{0}} = \frac{V_F}{m_{i,P}^{0}} \int_{0}^{t} C_{i,F}^{(t)} d\tau$$

0 to 160 days

ISO-MIGRATION: TIME x TEMPERATURE x M ISO-TIME: CONTAMINATION x TEMPERATURE x M



P.-M. Nguyen, J.-M. Julien, C. Breysse, C. Lyathaud, J. Thébault, O. Vitrac, Food Additives and Contaminants 2017, Doi: 10.1080/19440049.2017.1315777.

TOXICITY

"Truth in science can be defined as the working hypothesis best suited to open the way to the next better one."—Konrad Lorenz, Austria

theguardian

Google™ Custor

News Sport Comment Culture Business Money Life & style Travel Environment

News \rightarrow World news \rightarrow Food safety

Chemicals leaching into food from packaging raise safety concerns

Scientists, in BMJ paper, warn of potential long-term damage of exposure to synthetics, including formaldehyde in drinks bottles

Sarah Boseley, health editor The Guardian, Wednesday 19 February 2014

Jump to comments (449)

Packaged burger and chips. Synthetic chemicals in packaging include phthalates, known to disrupt hormone production. Photograph: Martin Godwin for the Guardian

Synthetic chemicals which are used in the processing, packaging and storing of the food we eat could be doing long-term damage to our health, environmental scientists warn.

The concerns have been raised in the Journal of Epidemiology and Community Health, part of the British Medical Journal group.

The scientists claim that tiny amounts of synthetic chemicals leach into food. While these minute quantities in themselves do no harm, no one knows how safe we are from a lifetime's exposure to the chemicals, such as formaldehyde, through eating food previously wrapped or stored in plastics.

In a commentary piece in the journal the scientists note that some of the chemicals that could cause concern are regulated but this does not prevent their being used widely in food packaging. They say that people who eat packaged or processed foods are likely to be chronically exposed to low levels of these substances throughout their lives.

Far too little is known about the long-term impact and especially about our exposure to such chemicals at critical points in human development, such as in the womb and during early childhood.

Share (9786)

Tweet 603

8+1 73 Pinit 18

in Share 78

M Email

= < g

Article history

World news Food safety

Business

Food & drink industry

Science Food science - Chemistry

Society Health - Cancer

Diabetes **UK news**

Environment Pollution - Plastic bags

More news

More on this story

China's toxic air pollution resembles nuclear winter, say scientists Air pollution now impedina photosynthesis and potentially wreaking havoc on country's food supply, experts warn

Air pollution: European commission launches legal action against the

Air pollution: how big a problem is it for

Geoffrey Kabat

Contributor FOLLOW

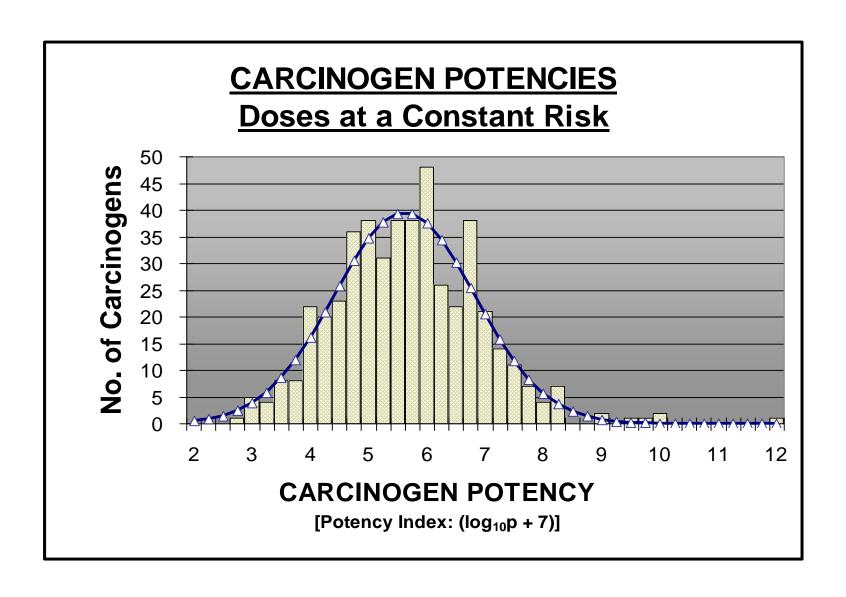
I write about the science and politics of health

How Abysmal Scientific Research Is Used To Scare America's Parents

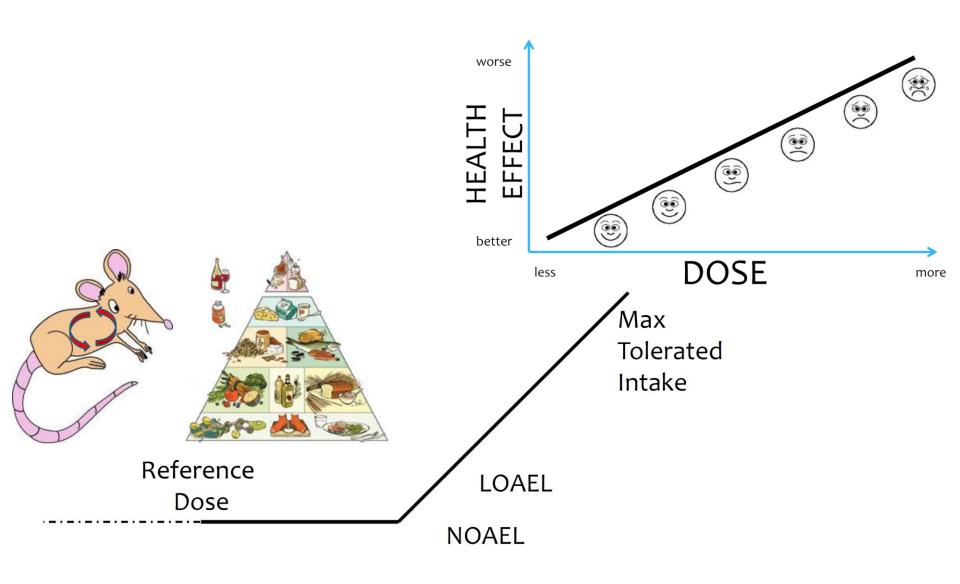
14 comments, 2 called-out + Comment Now + Follow Comments

Much that is published in scientific journals is of astonishingly poor quality.

We have become accustomed to a steady barrage of reports of hazards lurking in our environment that MAY pose a threat our health and that of our children.


These include, among others, low-level radiation exposure from nuclear power plants and nuclear waste; possible water contamination from hydraulic fracturing; and exposure to a wide range of chemicals, including pesticides and industrial pollutants, in food, water, air, and consumer products.

Potential hazards like these need to be studied and will be studied, but the public needs to realize that much that is published in scientific journals, and even in reputable journals, can be of astonishingly poor quality and is of absolutely no relevance to nonresearchers. But, far from these papers being ignored, they often get seized on by the media and high-lighted as if they provided serious, actionable evidence of a hazard.


How can this happen? How do mediocre or plain-wrong studies get accepted for publication in scientific journals? In essence the explanation is simple. Scientists and scientists-in-training need to find questions to work on and need to publish their results in order to put themselves on the map and to advance in their careers. Journals want to publish articles on topics that appear to be important and that will engage readers.

△ CONFERENCES AND MORE

ACUTE TOXICOLOGY

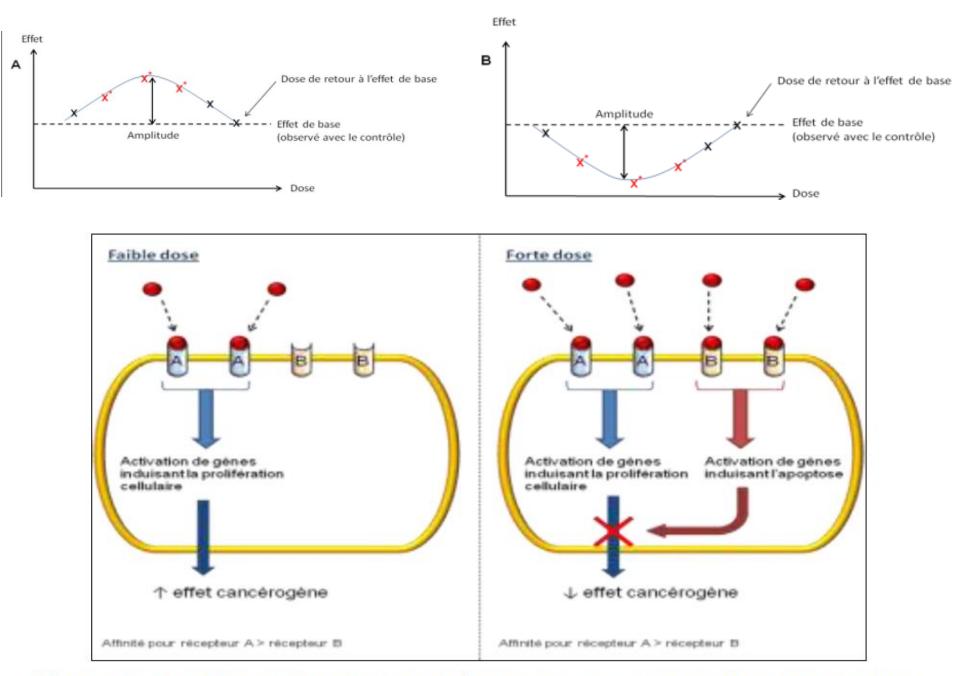
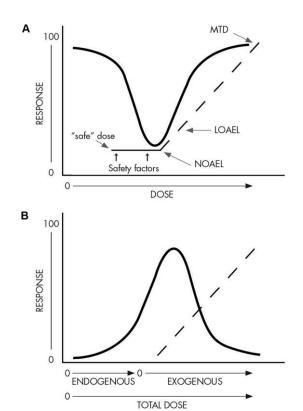



Figure 3 : Equilibre entre effets prolifératifs et pro-apoptotiques selon la dose

800 studies

Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses

Laura N. Vandenberg, Theo Colborn, Tyrone B. Hayes, Jerrold J. Heindel, David R. Jacobs, Jr., Duk-Hee Lee, Toshi Shioda, Ana M. Soto, Frederick S. vom Saal, Wade V. Welshons, R. Thomas Zoeller, and John Peterson Myers

Center for Regenerative and Developmental Biology and Department of Biology (L.N.V.), Tufts University, Medford, Massachusetts 02155; The Endocrine Disruption Exchange (T.C.), Paonia, Colorado 81428; Laboratory for Integrative Studies in Amphibian Biology (T.B.H.), Molecular Toxicology, Group in Endocrinology, Energy and Resources Group, Museum of Vertebrate Zoology, and Department of Integrative Biology, University of California, Berkeley, California 94720; Division of Extramural Research and Training (J.J.H.), National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina 27709; Division of Epidemiology and Community Health (D.R.J.), School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455; Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu 702-701, Korea; Molecular Profiling Laboratory (T.S.), Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts 02129; Department of Anatomy and Cellular Biology (A.M.S.), Tufts University School of Medicine, Boston, Massachusetts 02111; Division of Biological Sciences (F.S.v.S.) and Department of Biomedical Sciences (W.V.W.), University of Missouri-Columbia, Columbia, Missouri 65211; Biology Department (T.Z.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003; and Environmental Health Sciences (J.P.M.), Charlottesville, Virginia 22902

TABLE 1. Low-dose definitions and cutoff doses: BPA and DEHP as examples

Chemical	Estimated range of human exposures	Doses below the NOAEL	Doses below the LOAEL	Administered doses (to animals) that produce blood levels in typical humans
ВРА	$0.4-5 \ \mu g/kg \cdot d (679)$	No NOAEL was ever established in toxicological studies (38)	<50 mg/kg · d (38)	~400 μg/kg · d to rodents and nonhuman primates (4, 253)
DEHP	0.5–25 μ g/kg · d (680)	<5.8 mg/kg · d (681, 682)	<29 mg/kg · d (681, 682)	Unknown

Estimates of human exposure are made from consumer product consumption data but do not take into account that there are unknown sources of these chemicals. DEHP, Bis(2-ethylhexyl) phthalate.

Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses

Laura N. Vandenberg, Theo Colborn, Tyrone B. Hayes, Jerrold J. Heindel, David R. Jacobs, T., Duk-Hee Lee, Toshi Shioda, Ana M. Soto, Frederick S. vom Saal, Wade V. Welshons, R. Thomas Zoeller, and John Peterson Myers

Center for Reginerative and Developmental Biology and Department of Biology (L.N.V.). Tutis University, Mediford, Massachusetts OLISTs. The Endorsine Distington Endorsing CC. J. Peonis, Colorada B (128. Laboratory for Integrative Biology in American Property of Integrative Biology, Chrisesty of California, Betteley, California 494720, Dission of Estamural Research and Training (J.H.), National Institute of Environmental Health Sciences, National Institute of Health, U.S. Department of Health and Health Sciences, Research Training (Bark, North Carolina 27709, Dission of Health and Health Sciences, Between Community Health (D.R.L.), School of Public Health, Usersity of Minnescota, Minnescota, Between Community Health (D.R.L.), School of Public Health, Usersity of Minnescota, Minnescota, Minnescota, Sciences (T.S.), Sussachusetts (D.R.L.), School of Public Health, Usersity of Minnescota, Minnesco

• LOW-DOSE EFFECT SUBSTANCES

TABLE 4. Select examples of EDCs whose potential low-dose effects on animals remain to be studied

Chemical	Use	EDC action	Low-dose cutoff
Antiseptics and preservatives			
Butyl paraben Propyl paraben	Preservative (cosmetics) Antimicrobial preservative found in pharmaceuticals, foods, cosmetics, and shampoos	Estrogenic, antiandrogenic Estrogenic activity	2 mg/kg · d (EPA) LOAEL 10 mg/kg · d, NOEL 6.5 mg/kg · d (Europa)
Cosmetics and personal care products	,		
2,4-Dihydroxybenzophenone	UV absorber in polymers, sunscreen agent	Estrogenic activity	Not identified
3-Benzylidene camphor	UV blocker used in personal care products	Estrogenic activity	0.07 mg/kg · d (710)
4,4'-Dihydroxybenzophenone	UV light stabilizer used in plastics, cosmetics, adhesives, and optical fiber	Estrogenic activity	Not identified
Benzophenone-2	Used in personal care products such as aftershave and fragrances	Estrogenic activity, changes in T_4 , T_3 , and TSH levels, alterations in cholesterol profile	NOEL 10–333 mg/kg · d (711)
Benzophenone-3 Multiple use (other)	UV filter	Estrogenic, PPAR γ activator	200 mg/kg · d (Europa)
Melamine	Flame-retardant additive and rust remover; used to make laminate, textile, and paper resins; metabolite of cyromazine	Affects voltage-gated K ⁺ and Na ⁺ channels and Ca ²⁺ concentrations in hippocampal neurons	63.0 mg/kg · d (FDA)
Resorcinol	Used in the manufacturing of cosmetics, dyes, flame retardants, hair dye formulations, pharmaceuticals, skin creams, and tires	Alters ${\rm T_4}$ and TSH levels	80.00 mg/kg · d (Europa)
Pesticides			
Aldrin ^a	Insecticide	Estrogenic activity	0.025 mg/kg • d (Health Canada)
Alachlor	Herbicide	Decreases serum T_4 , binds PR, weakly binds ER	1 mg/kg · d (EPA)
Amitrole	Herbicide	Decreases thyroid hormone	0.12 mg/kg • d (FAO)
Bitertanol Carbendazim	Fungicide Fungicide	Alters aromatase Affects FSH, LH, and testosterone levels; alters spermatogenesis and Sertoli cell morphology	30 mg/kg • d (EPA) 8 mg/kg • d (712)
Diazinon	Insecticide	Alters glucocorticoids	0.065 mg/kg · d (CDC)
Endrin ^a	Insecticide	Stimulates glucocorticoid receptor	0.025 mg/kg · d (CDC)
Fenoxycarb	Insecticide	Alters acetylcholinesterase	260 mg/kg · d (CDC)
Mirex ^a	Insecticide	Decreases testosterone levels	0.075 mg/kg · d (CDC)
Zineb	Fungicide	Alters T ₄ and dopamine levels	LOAEL 25 mg/kg·d (EPA)
Ziram Resins	Fungicide	Alters norepinephrine levels	1.6 mg/kg · d (EPA)
Bisphenol F	Used in polycarbonates	Alters T ₄ , T ₃ , and adiponectin levels, has estrogenic activity	LOAEL 20 mg/kg · d (713)
Styrene	Precursor to polystyrene	Alters dopamine	200 mg/kg · d (EPA)

• HIGH DOSE: 10 000 PPB EXPOSURE • LOW DOSE: 1 PPB EXPOSURE

Mise au point Complications liées à l'exposition n utero au diéthylstilbestrol (DES) Distilbène®, Stilboestrol-Borne®) Actualisation 2011 Agence française de sécurité sanitaire des produits de santé afssaps 🔻 des produits de santé 143-147 boulevard Anatole France F-93285 Saint-Denis Cedex www.afssaps.fr

Newbold RR, Padilla-Banks E, Jefferson WN, Heindel JJ 2008 Effects of endocrine disruptors on obesity. Int J Androl 31:201–208

CONTROVERSY O

Nat. Rev. Endocrin. 6 (2010), 237

Editorial

Nature Reviews Endocrinology 6, 237 (May 2010)

Subject Category: Epidemiology

The perils of plastic

Vicky Heath About the author

A 'round-robin' spam e-mail that is circulating on servers worldwide claims that drinking bottled water that has been left in a warm car can cause breast cancer. Is this warning just an urban myth or does it hold a grain of truth? The FDA, it seems, is erring on the side of caution; earlier this year, the organization revised its position on the safety of bisphenol A (BPA), a chemical used in the manufacture of plastics. Previously deemed safe for food-contact use, the FDA has now expressed "some concern" about the potential health risks that BPA poses to fetuses, infants and young children.

ENDOCRINOLOGY

66The plastics industry has a responsibility to ensure that its products are safe..."

Is society compromising its health for the conveniences of modern living? Industrial chemicals, such as BPA, are literally everywhere: in homes, in the workplace, even the great outdoors. They cannot possibly all be avoided. Given the current recommendations of the FDA and the Endocrine Society, a multidisciplinary approach is clearly needed—one that involves scientists, clinicians, policy makers and the chemicals industry—with the aim of gathering reliable data to form the basis of national and international public-health policies. In the meantime, the use of plastics and other man-made substances should be closely monitored in groups known to be at the greatest risk. Perhaps that e-mail is not spam after all.

OF PACKAGING MATERIA

Water Research 46(2012), 571-583

[...]

Genotoxic and estrogenic activities in PETbottled water have been reported. Chemical mixtures in bottled water have been suggested as the source of these toxicological effects. [...]

Formaldehyde, acetaldehyde and antimony are clearly related to migration from PET into water. However, several studies have shown other theoretically unexpected substances in bottled water. The origin of these compounds has not been clearly established (PET container, cap-sealing resins, background contamination, water processing steps, NIAS, recycled PET, etc.).

[....]

ESTROGENIC COMPOUNDS FROM PET??

| ABC Science

△ Recherche

2 RECENT STUDIES (Italian and German) on drinking water turbateurs endocriniens: restons vigilants»

involving a recombinant yeast-based in vitro assay (March 2009 in International Journal of Hygiene and Environmental Health) → estrogenic activity was assessed in 30 PET-bottled mineral water samples. Ninety percent of the samples tested negative for estrogenic activity. Of the remaining samples, most showed measurements corresponding to a range of 14–23 ng/L estradiol equivalents—similar to the estrogen burden posed by treated drinking water derived from groundwater and river water (15 and 17 ng/L estradiol equivalents, respectively).

Involving to mud to snails (Potamopyrgus antipodarum) (10 March 2009,

Environmental Science and Pollution Research) PET-housed snails produced up

to twice as many embryos as glass-housed snails..

BPA and phthalates do

"What we found was really surprising to us." says Wagner.

Common plastic ingredient linked to birth defects. Science Online. 01 Apr 2003

Reference = glass bottle water with same water.

The study adds to growing concerns about products that

epidemiologist at the University of Rochester School of Medicine and Dentistry in New York.

"This is coming at a good time because the use of bottles for consuming water is getting very bad press now because of its carbon footprint," she says. "It's just another nail in the coffin of bottled water, the way I see it."

Wagner and a colleague used genetically engineered yeast to analyse 20 samples of mineral water. Nine samples came out of glass bottles, nine were bottled in PET plastic and two were in cardboard, juice-like boxe

The specialised yeast, which change colour in the presence of estrogen-like compounds, revealed estrogenic activity in seven of the nine plastic bottles (and both cardboard samples), compared with just three of the nine glass ones.

Overall, Wagner says, levels of these compounds in the water were surprisingly high

molécules sur d'autre:
thyroïde qui seraient l
batraciens. On se der
lipides ne pourrait pas
raugmentation du niveau d'obésité dans le

raugmentation du niveau d'obésité dans les populations occidentales. Plusieurs centaines de substances sont actuellement classées parmi les perturbateurs endocriniens.

Où les trouve-t-on ?

Ces molécules sont principalement détectées dans l'eau, puis dans toute la chaîne alimentaire. De plus, comme viennent de le montrer Martin Wagner et Jörg Oehlmann de l'université Goethe de Frankfort [1], peut-être aussi dans le plastique des bouteilles d'eau minérales en polyéthylène téréphtalate (PET).

RISK ASSESSMENT

European Food Safety Authority

INRA 119

http://www.efsa.europa.eu

efsa

Scientific Committee

Senior scientists, with experience of work within scientific bodies, covering all disciplines across EFSA's areas of responsibility.

CONTAM

Panel on Contaminants in the Food Chain

Experts in chemistry, exposure assessment, toxicology, epidemiology, and statistics

AHAW

Panel on Animal Health and Welfare Experts in toxicology, toxicity, epidemiology, chemistry, exposure assessment, and microbiology.

ANS

Panel on Food Additives and Nutrient Sources Added to Food Experts in toxicology, toxicity, epidemiolog

Experts in toxicology, toxicity, epidemiology, chemistry, exposure assessment, and microbiology.

Panel on Biological Hazards

Experts in epidemiology, microbiology, pathology, and exposure assessment.

Panel on Genetically Modified Organisms Experts in food and feed safety assessment, environmental sciences, molecular characterisation, and plant science.

Panel on Dietetic Products, Nutrition and Allergies Experts in nutrition, human medicine, exposure assessment, toxicology

Panel on Plant Health Experts in pest risk assessment, plant pathology, epidemiology, and ecology.

Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids

Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids

FEEDAP

Panel on Additives and Products or Substances used in Animal Feed Experts in animal nutrition, toxicology, microbiology, exposure assessment, and

PPI

Panel on Plant Protection Products and their Residues Experts in chemistry, toxicology,

REGULATION

PRINCIPLES OF FOOD INERTIA: A LONG HISTORY

L'ART DE CONSERVER.

8 a. Année. — Nº 19

JUILLET 1910

LA CONSERVE ALIMENTAIRE

TOUTE

Pulletin mensuel de Vulgarisation Chéorique et Pratique de Fabrication PARAISSANT LE 15 DE CHAQUE MOIS Bedige par un groupe de Hahricants-Industriels et de Chefs d'Emplois de cette Industrie

Ouvn.

Man sur l

Proprie ancie la M

Nicolas APPERT (1750-1841)

École Nationale D'INDUSTRIE ALIMENTAIRE

Nicolas Appert COMITÉ DE DIRECTION

Bourse du Commerce

- Paris -

CHEZ P NAPOL

L'idée de la création de cette école dont nous avons été les plus fervents propagandistes vient d'être mise définitivement au point par un groupe de praticiens, de chimistes et d'agronomes distingués qui vont en assurer le lonctionnement.

L'enseignement sera tout à la fois théorique et pratique.

Dans la voie pratique, le Comité de Direction se propose, non pas d'organiser une usine de fabrication de conserves et de produits alimentaires divers, destinée à concurrencer l'industrie libre, mais de créer des laboratoires d'essais et d'enseignement que dirigera un praticien qualifié et où chaque fabricant pourra venir se documenter et concourir aux progrès de la science alimentaire

Les essais théoriques seront dirigés par un technologue éminent, M. CROLBOIS, chef de laboratoire à l'Institut Pasteur.

Une très large place sera réservée, dans l'enseignement à la question des machines, appareils et ustensiles employés par l'Industrie alimentaire. Un ingénieur diplômé, M. RAY-MOND MONOT, des usines de Diétrich, est chargé d'organiser cette partie du programme.

M. Moréal de Brévans, le distingué sousdirecteur du laboratoire municipal, a bien youlu se charger de l'enseignement si important de la chimie appliquée à l'alimentation.

Enfin M. Ed. Jacquet, ingénieur-agronome, administrateur de l'école, occupera la chaire de professeur d'« Alimentation Commerciale ».

Ajoutons que notre bulletin transformé en revue bi-mensuelle à laquelle collaboreront désormais les personnalités ci-dessus, devient le Bulletin Officiel de l'Ecole.

En un mot et suivant l'exemple d'autres pays, une Université nouvelle et bien moderne vient de naître en France, celle de l'Industrie Alimentaire. Cette industrie quitte ainsi, définitivement, le domaine empirique pour rentrer dans celui des sciences exactes, où elle avait LA CONSERVE ALIMENTAIRE

sa place déjà marquée par les exigences et le progrès sans cesse grandis-ants de la vie contemporaine.

290

Pour le Comité de Direction : Aug. Corthay.

Méfions-nous des Conserves Étrangères

Nous donnons ci-dessous la traduction d'un extrait du passage que M. Hamel consacre à la législation et l'inspection des conserves alimentaires au Canada, dans le traité qu'il publie en ce moment. (Modern practice of canning

« Comparés avec les règlements qui régissent l'inspection des conserves alimentaires aux Etats-Unis et en Europe, ceux du Canada sont encore à l'état embryonnaire.

Pour protéger les fabricants Canadiens contre la concurrence des Etats-Unis, il était nécessaire de créer une législation, au moins sur le

- « Je ne parle pas ici de l'inspection des viandes fraiches qui est soumise à un groupe de savants et de vétérinaires de valeur.
- « Mais l'acheteur éclairé de conserves alimentaires quelles qu'elles soient, viandes, poissons, fruits ou légumes est loin d'avoir obtenu la mêm. sécurité.

«Le règlement en date de 1908 qui régit l'ins-

pection des conserves alimentaires nous dit : Aucune substance alimentaire ne doit contenir de produit nuisible, produits chimiques, colorants ou antiseptiques, et plus loin on nous dit : Il sera fourni aux Inspecteurs par les soins du Ministère de l'Agriculture les noms des anliseptiques et colorants inoffensifs dont l'emploi est permis. L'addition de tout autre empêchera le produit de recevoir l'étiquette constatant l'inspection.

- « Nous comprenons bien que les chimistes du Ministère sont là pour condamner tout produit alimentaire où l'analyse révèlerait la présence d'un produit chimique dangereux, mais pour ceux qui sont au courant des discussions en cours entre les hygiénistes les plus distingués du monde entier au sujet de la plus ou moins grande nocivité de tel ou tel antiseptique, la satisfaction est maigre.
- « Je répète que le fabricant de conserves en bottes n'a pas besoin d'antiseptiques pour assurer la conservation indéfinie de ses produits. La stérilisation lui suffit.
- « Pourquoi donc ne pas faire comprendre au monde entier que les mots « CANADA APPROVED » de l'étiquette signifient absence entière de susbstances nuisibles, aussi bien dans les conserves que dans les viandes fraîches.
- « Que si quelques antiseptiques sont considérés comme inoffensifs par le Ministère de l'Agriculture, pourquoi ne pas faire connaître au public comme aux fabricants le nom de ce qui est permis et de ce qui est prohibé?
- « Le règlement de 1908 ne prend nullement en considération la qualité de la soudure employée, pas plus que celle de l'acide, et il semble que sur ce point les japonais sont bien en avance sur nous lorsqu'ils donnent les commandes pour leur armée.
- « Pour en finir, il semble que des instructions plus complètes auraient été pour le plus grand intérêt du fabricant lui-même, en donnant au public consommateur une garantie parfaite de sécurité. La consommation en aurait été accrue en regagnant la confiance des consommateurs qui sont peu confiants dans les conserves, généralement sans raisons, d'ailleurs. »

G. T. HAMEL, ingénieur.

L'auteur saisant une œuvre purement technique et non de polémique est évidemment très modéré. Mais pour qui lit entre les lignes et pour nous qui savons combien sont rares parmi le personnel de l'inspection les gens compétents, toutes les places étant prises par les politiciens, nous ne nous sentons pas rassu-

YOUR ROLE

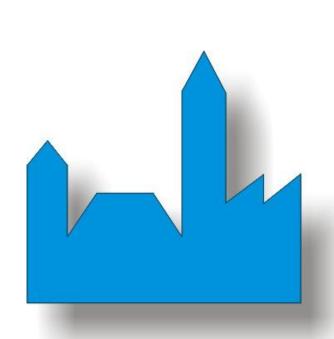
ROUTINE ASSESSMENT

		Risk balancing	Conflicts
role	Scientifc risk assessment	Conflict Evaluative	cognitive, evaluative, normative
Routine	Conflict: cognitive	Targets: BFR Risken erkennen - Gesundheit schützen ONE BFR Risken erkennen - Gesundheit schützen ONE BFR Risken erkennen - Gesundheit schützen ONE BFR Risken erkennen - Gesundheit schützen FOOD FOOD	Targets:DG SANCO, industry stakeholders
Target: industry	Target: professional associations	efsa European Food Safety Authority	
Discourse: internal	Discourse: cognitive	Discourse: reflective	Discourse: participatory
Outcome: simple	Outcome: complex	Outcome: uncertain	Outcome: ambiguous

Risk Tradeoff

WHAT IS RISK?

Risk is a function of perception and representation





REGULATION=TRANSFER OF RESPONSABILITIES

FOOD

https://ec.europa.eu/food/safety/chemical_safety/food_contact_materials_en

European Commission > Food Safety > Food > Chemical safety > Food Contact Materials **HEALTH**

FOOD

ANIMALS

PLANTS

CHEMICAL SAFETY Contaminants

Residues of Veterinary Medicines

Hormones in Meat

Pesticide Residues

Food Contact Materials

Legislation

Authorisations

Non-harmonised

Consultation

ALL TOPICS

Food Contact Materials

Food comes into contact with many materials and articles during its production, processing, storage, preparation and serving, before its eventual consumption. Such materials and articles are called Food Contact Materials (FCMs). Food contact materials are either intended to be brought into contact with food, are already in contact with food. or can reasonably be brought into contact with food or transfer their constituents to the food under normal or foreseeable use. This includes direct or indirect contact. Examples include:

- · containers for transporting food
- machinery to process food
- · packaging materials
- · kitchenware and tableware

The term does not cover fixed public or private water supply equipment.

FCMs should be sufficiently inert so that their constituents neither adversely affect consumer health nor influence the quality of the food. To ensure the safety of FCMs, and to facilitate the free movement of goods, EU law provides for binding rules that business

The EU Rules on food contact materials can be of general scope, i.e. apply to all FCMs or apply to specific materials only. EU law may be complemented with Member States national legislation if specific EU rules do not exist.

The safety of FCM is evaluated by the European Food Safety Authority (EFSA). At EFSA's website you can search for opinions on substances to be used in food contact

The safety of Food Contact Materials is tested by the business operators placing them on the market, and by the competent authorities of the Member States during official controls. Scientific knowledge and technical competence on testing methods is being maintained by the European Reference Laboratory for Food Contact Materials (EURL-FCM). Its website provides guidelines and other resources concerning the testing of food contact materials.

Principles for EU legislation

Union legislation on food contact materials at EU level aims to:

- Protect consumers' health
- . Ensure the effective functioning of the internal market

Contacts

- SANTE-fcm@ec.europa.eu
- · European professional organisations
- . European Reference Laboratory on Food Contact Materials (EURL-FCM)
- · European Food Safety Authority

Training

For government officials engaged in food and feed safety inspection of selected countries training on food contact materials is provided free of charge under BTSF. Also refer to the European Training Platform for Safer Food.

Share

RELATED LINKS

- Food Contact Materials <u>Database</u>
- Multi-language versions of brochures and guidance

RELATED DOCUMENTS

- EU guidelines on conditions and procedures for the import of polyamide and melamine kitchenware originating in or consigned from China and Hong Kong J
- EU Guidance to the Commission Regulation (EC) No 450/2009 on active and intelligent materials and articles intended to come into contact with food J

OUICK LINKS

Rapid Alert for Food and Feed (RASFF)

Health and food audits and analysis

European Food Safety Authority (EFSA) Better Training for Safer

Food (BTSF) F-News

Legislation

I. General legislation

The framework Regulation

Regulation (EC) No 1935/2004 provides a harmonised legal EU framework. It sets out the general principles of safety and inertness for all Food Contact Materials (FCMs).

The principles set out in Regulation (EC) No 1935/2004 require that materials do not:

- · Release their constituents into food at levels harmful to human health
- · Change food composition, taste and odour in an unacceptable way

Moreover, the framework provides:

- · for special rules on active and intelligent materials (they are by their design not
- · powers to enact additional EU measures for specific materials (e.g. for plastics)
- · the procedure to perform safety assessments of substances used to manufacture FCMs involving the European Food Safety Authority
- · rules on labelling including an indication for use (e.g. as a coffee machine, a wine bottle, or a soup spoon) or by reproducing the appropriate symbol. For more information, please refer to the following document on Symbols for labelling food contact materials.
- for compliance documentation and traceability

Regulation on Good Manufacturing Practices

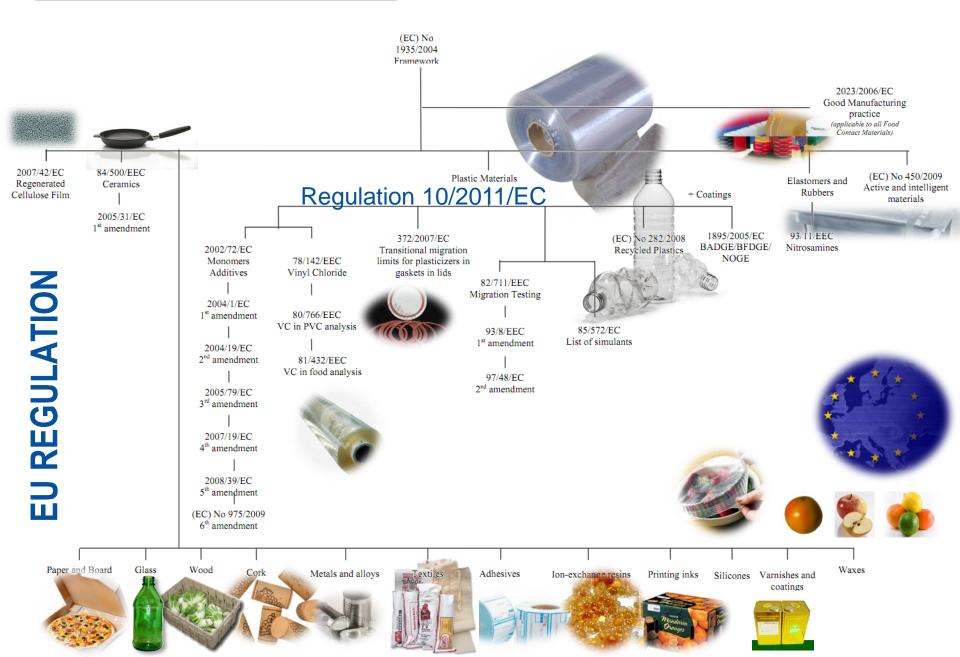
Regulation (EC) No 2023/2006 ensures that the manufacturing process is well controlled so that the specifications for FCMs remain in conformity with the legislation:

- · premises fit for purpose and staff awareness of critical production stages
- · documented quality assurance and quality control systems maintained at the
- · selection of suitable starting materials for the manufacturing process with a view to the safety and inertness of the final articles

Good manufacturing rules apply to all stages in the manufacturing chain of food contact materials, although the production of starting materials is covered by other legislation.

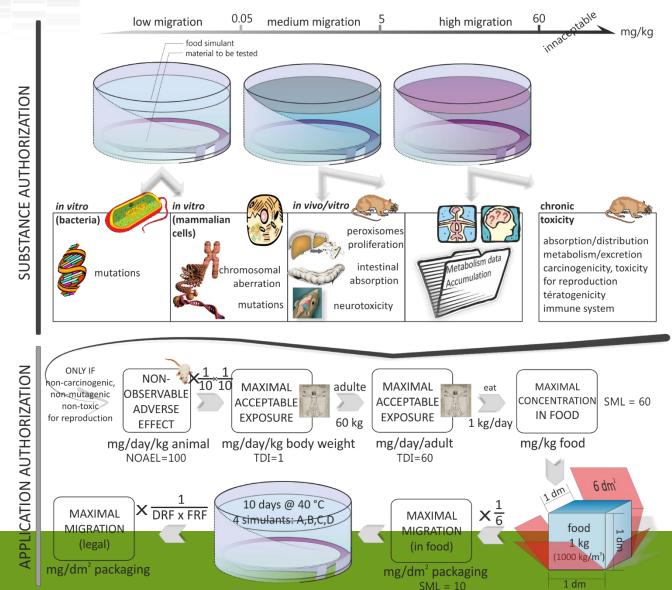
II. EU legislation on specific materials

In addition to the general legislation, certain FCMs — ceramic materials, regenerated cellulose film, plastics (including recycled plastic), as well as active and intelligent materials - are covered by specific EU measures. There are also specific rules on some starting substances used to produce FCMs.


Plastic Materials	
Active and Intelligent Materials	
Recycled Plastic Materials	
Ceramics	
Regenerated Cellulose Film	

III. Other Legislation

Legislation on Specific Substances


- · Regulation 1895/2005/EC restricting use of certain epoxy derivatives in materials and articles intended to come into contact with food
- . Directive 93/11/EEC release of N-nitrosamines and N-nitrosatable substances from rubber teats and soothers

SPECIFIC RULES FOR PLASTICS

COMPLIANCE ISSUES

Risk assessment vs risk management

502 substances (including 230 monomers and 272 additives) among the 937, which are positively listed in EU directives on plastics in contact with food, are subjected to (SML)

EFSA: Risk Assessment

ADI = NOEL/100 (per kg body weight)

DG SANCO: Risk Management

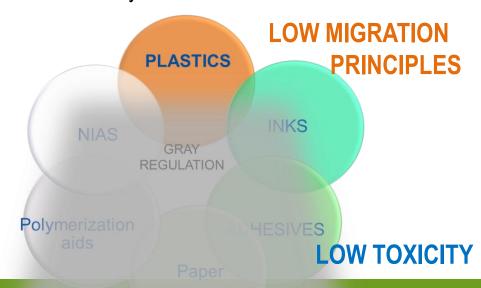
SML= 60 * ADI (mg intake per person per day

from an assumed 1 kg packaged food)

ADI = Acceptable Daily Intake NOEL = No Observed Effect Level

SML = Specific Migration Level LOEL = Lowest Observed Effect Level

LOAEL = Lowest Observed Adverse Effect Level

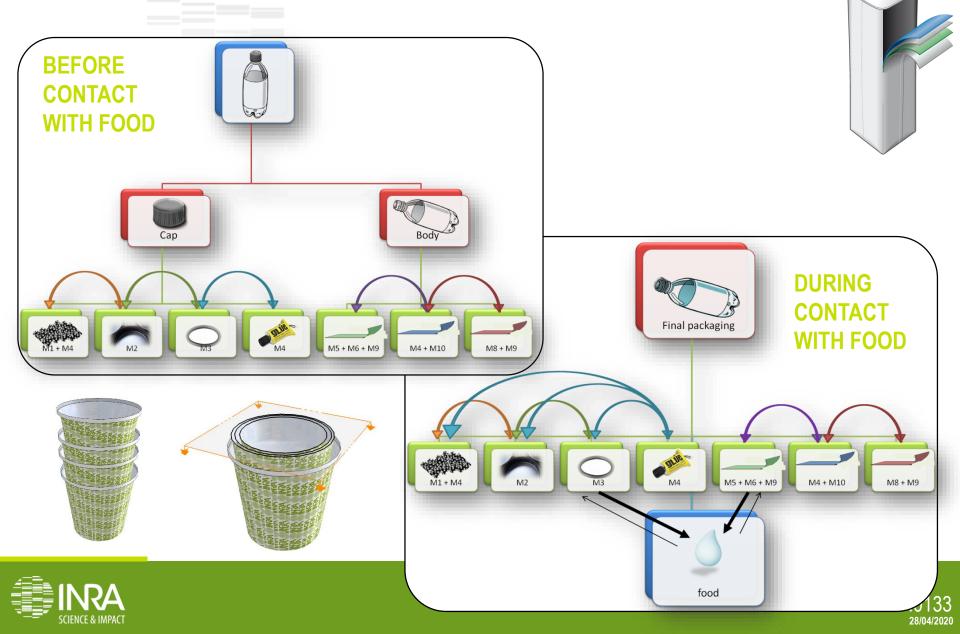

SPECIFIC EU RULES FOR PLASTICS FOR FOOD CONTACT

Materials can be regulated alone or in combination with other materials

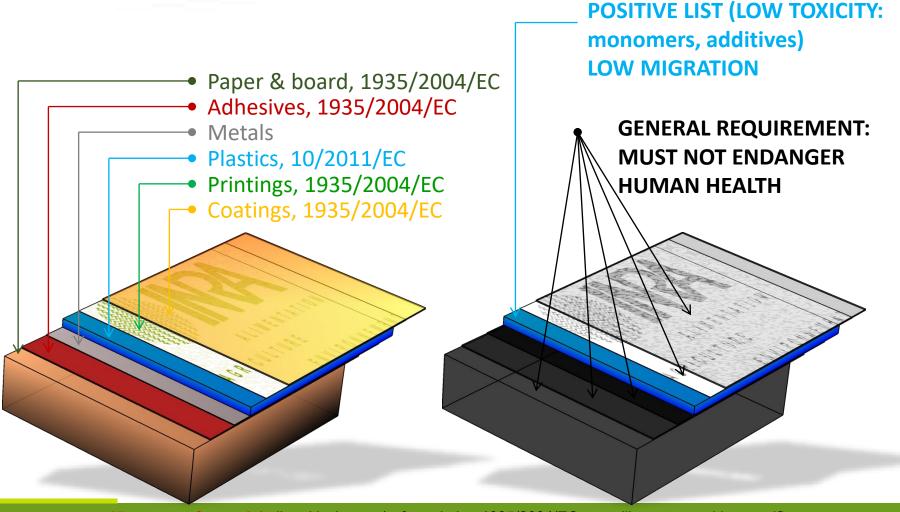
- list of substances
- purity standard for substances
- overall migration limits: OML (60 mg/kg or 10 mg/dm²)
- specific migration limits: SML
- other rules ensuring safety and inertness
- compliance, sampling, analytical methods, migration modeling
- traceability
- declaration of compliance

Plastic materials

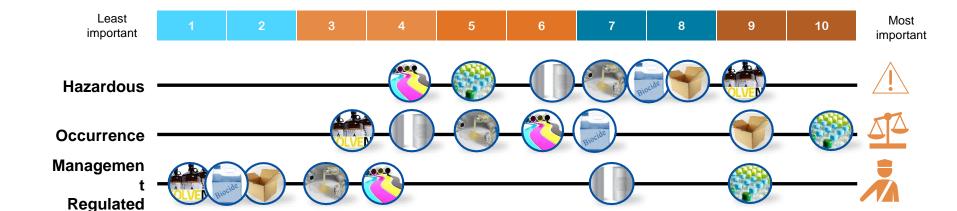

- exclusively plastics
- Plastic multilayers or layers tied with adhesives
- Plastic layers, coatings forming gaskets
- Plastic layers in multi-materials



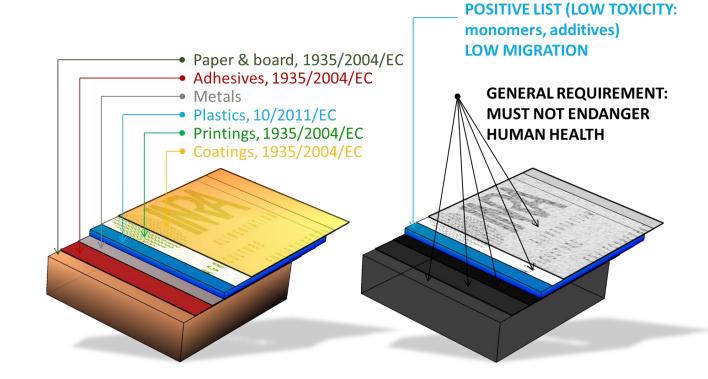
CHAINED STEPS, COMBINED MATERIALS

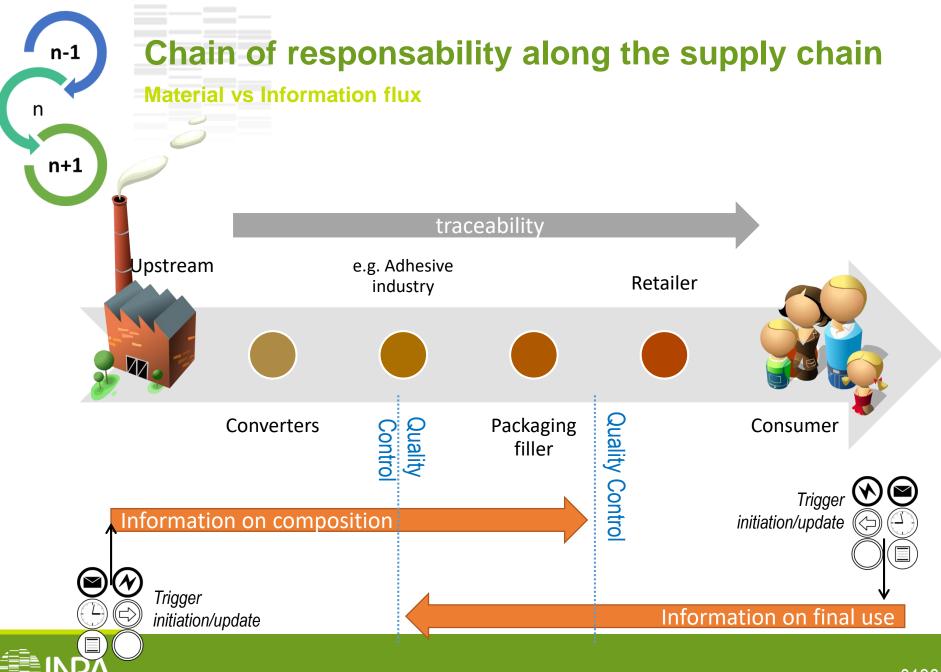


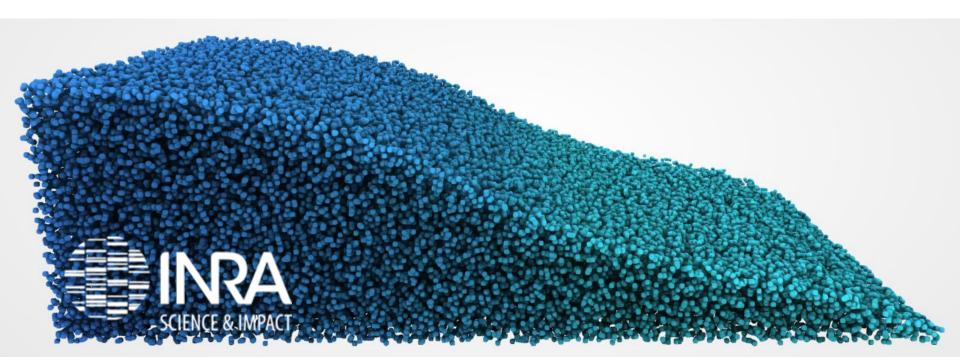
CROSSED-MASS TRANSFER BETWEEN MATERIALS

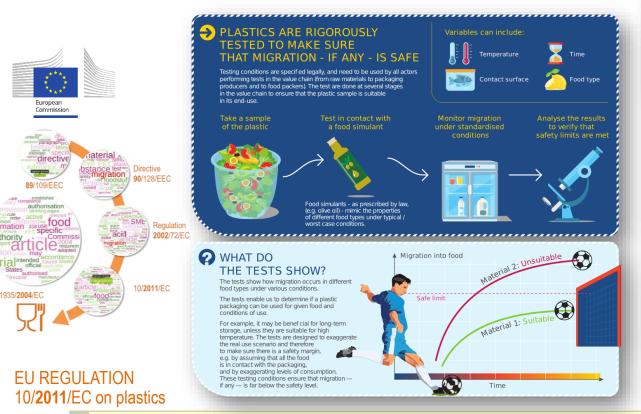


HETEROGENEOUS EU REGULATIONS

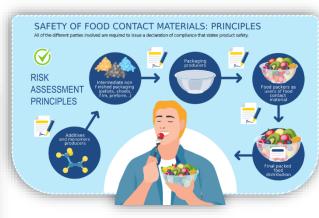

Variable concepts







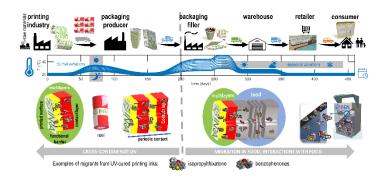
DIFFUSION IN POLYMERS

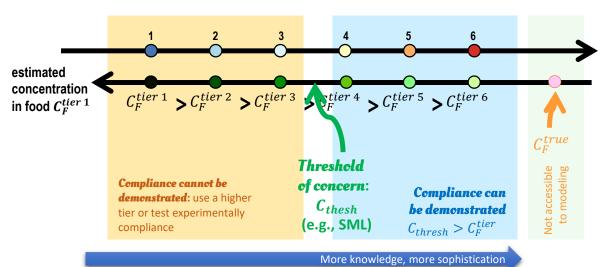

OVERVIEW, BARRIER PROPERTIES, MIGRATION ISSUES

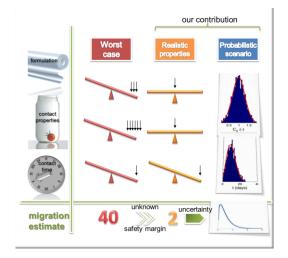
> Is migration modeling a trusted science?

As migration testing is complex, costly and time consuming it should be admissible that compliance can be demonstrated also by calculations, including modelling, other analysis, and scientific evidence or reasoning if these render results which are at least as severe as the migration

"We have reviewed the proposed recycling process as well as the information you obtained from surrogate testing and migration modeling, which were submitted to demonstrate the capability of the proposed recycling process to remove potential contaminants from PCR-PET.


Based on our review of these data, we have determined that the proposed recycling process, as described in the subject submission,"


https://www.fda.gov/Food/IngredientsPackagingLabeling/PackagingFCS/RecycledPlastics/default.htm

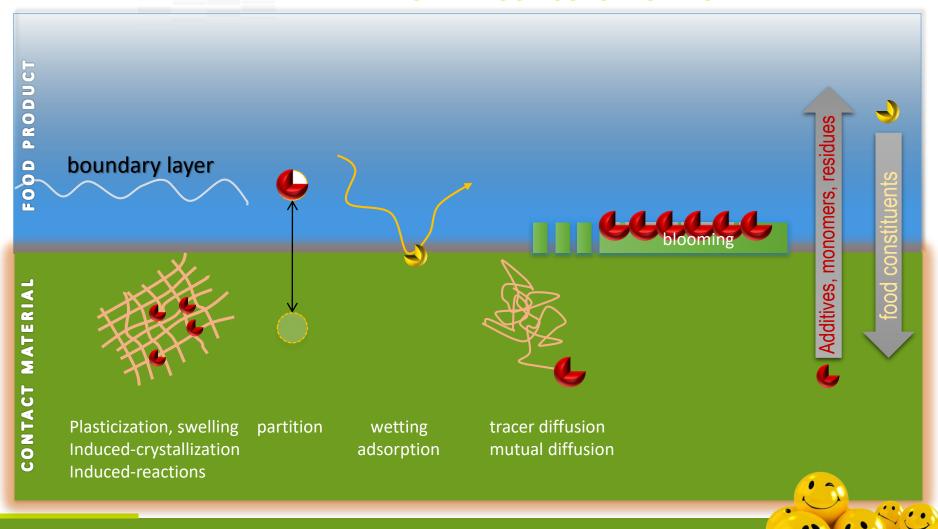


> The principles of migration modeling = Tier modeling

- conservalism modeling overestimates real migration.
- *reliability*. mass transfer pathways and substances obey to well-described mechanisms
- consistency. $D_{i,P}$ and $K_{i,F/P}$ are enough known with enough conservatism.
- parsimony. sophisticated and refined scenarios should be considered only when simplified ones fail.
- proportionality. non-compliance cannot be demonstrated by calculation.

Migration pathways migration where modeling is applied FOOD (liquid, solid) direct without contact contact paper with without food & others food board solid liquid heat curing curing arcreates

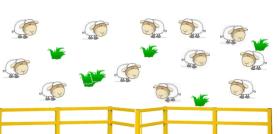
Ø * Q Ø * Q Ø * Q Ø *

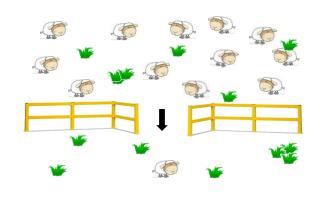


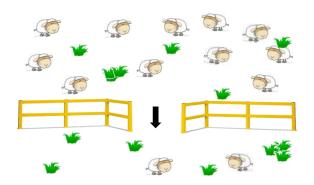
MIGRATION ISSUES

CROSSED MASS TRANSFER OF FOOD CONTACT MATERIALS AND FOOD CONSTITUENTS

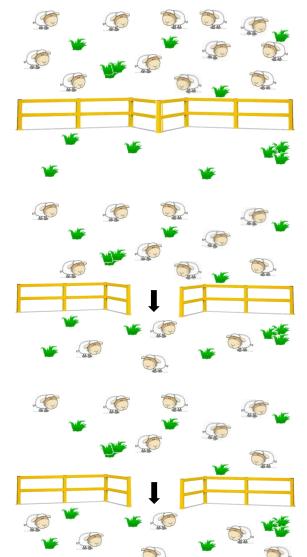
28/04/2020

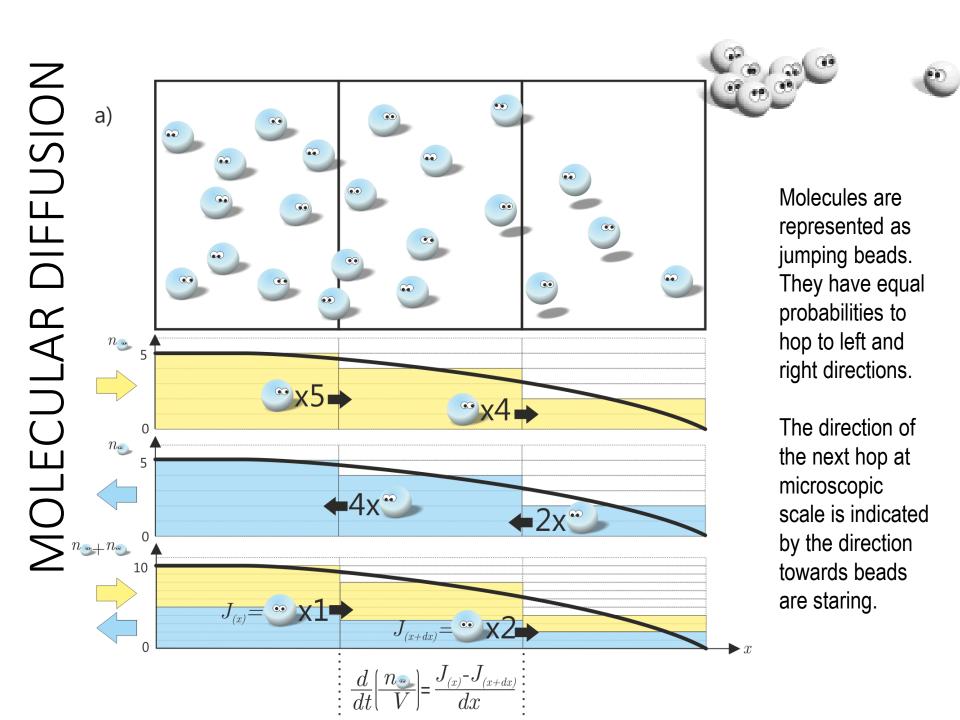


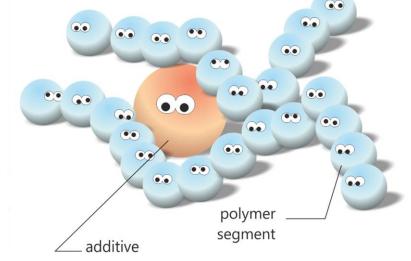

 $t_0 = 0$ hour

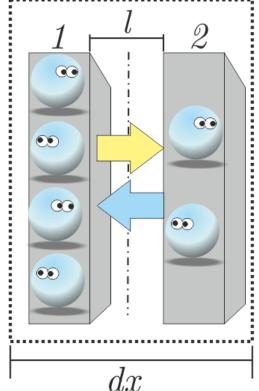

 $t_1 = 10$ hours

= 30 hours







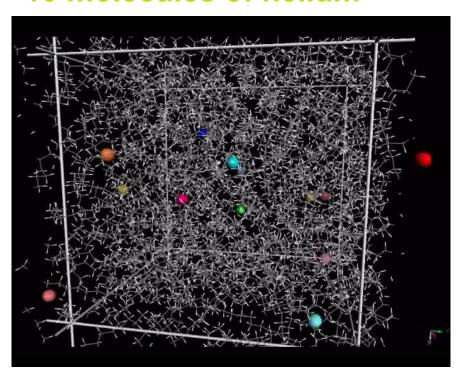


$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right)$$

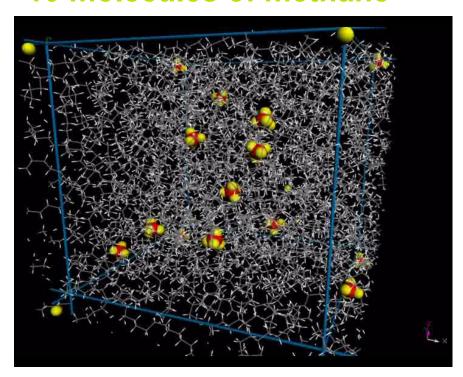
Mutual diffusion of additive Among polymer segments

$$j_{\bullet} = \mathbf{v} \cdot n^{1} = \frac{1}{2} \cdot \mathbf{v} \cdot n^{1}$$

$$j_{\bullet} = \mathbf{v} \cdot n^{2} = \frac{1}{2} \cdot \mathbf{v} \cdot n^{2}$$

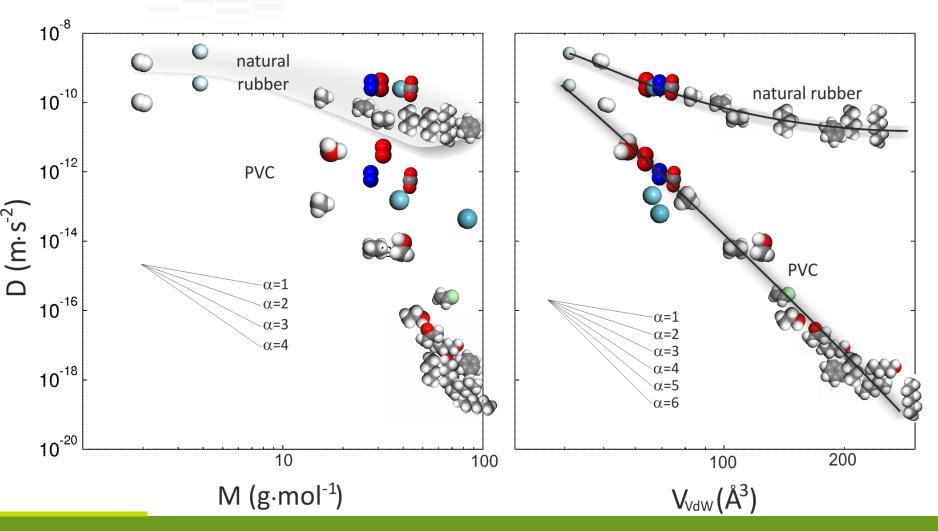

$$\frac{d}{dx}c_{\bullet} = \frac{n^{2}}{l} \cdot l - n^{1} \cdot l$$

$$J = j_{\bullet} - j_{\bullet} = -\frac{1}{2} \cdot \mathbf{v} \cdot l^{2} \cdot \frac{d}{dx}c_{\bullet}$$

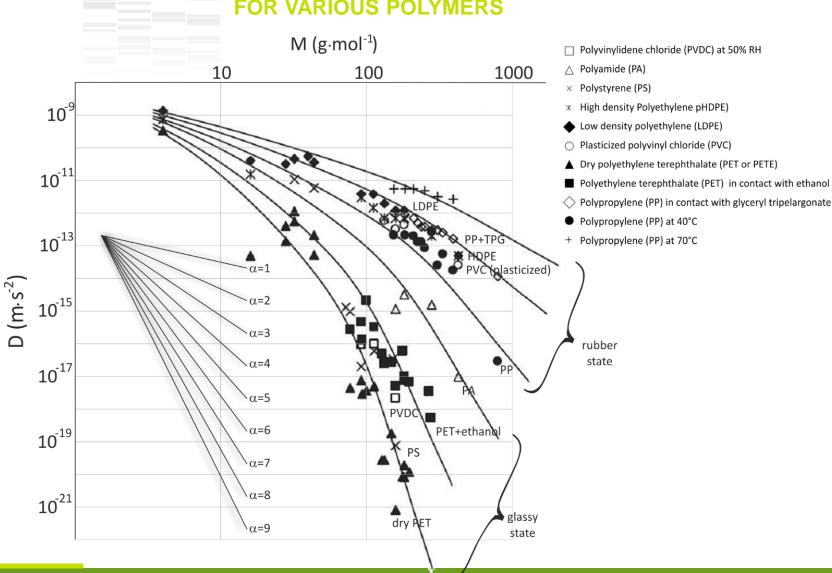

Interpretation of the net flux J (first Fick Law) as the microscopic exchange of molecules at frequency v between states 1 and 2 separated by a distance dx.

DIFFUSION IN POLYETHYLENE (0.5 NS SIMULATION, T=298 K)

10 molecules of helium

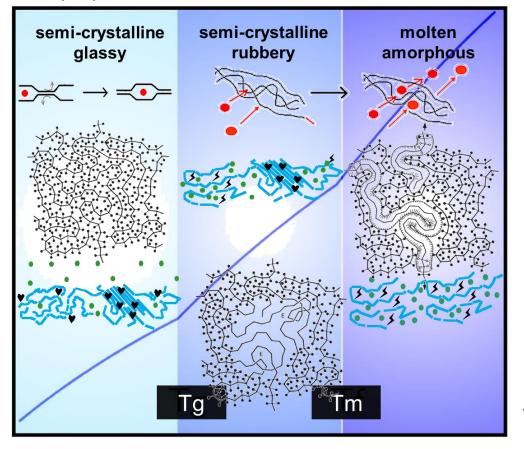

10 molecules of methane

SCALING D WITH SOLUTE SIZE


STIFF DIFFUSANTS

SCALING EXPONENTS

FOR VARIOUS POLYMERS

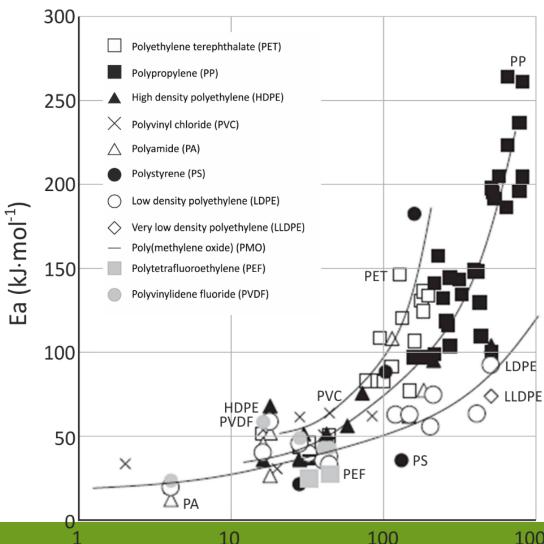


ACTIVATION OF DIFFUSION BY TEMPERATURE

BELOW TG, ABOVE TG

log(D)

Т

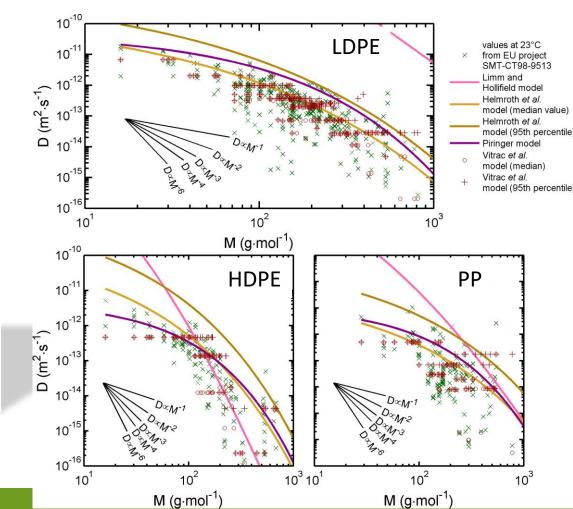


SCALING ACTIVATION ENERGY

VARIOUS DIFFUSANTS IN VARIOUS POLYMERS

Ea(M) $\approx \text{Ea}(M_0)$ $+ ln(M/M_0)$

Crit Rev Food Sci Nut 2015 (Fang & Vitrac) http://www.tandfonline.com/doi/full/10. 1080/10408398.2013.849654

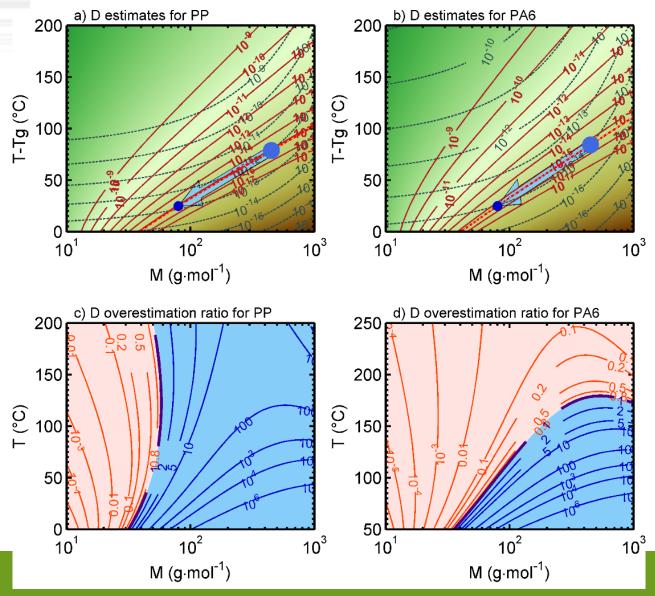

OVERESTIMATING D VALUES

PIRGINGER EQUATION

$$\ln \widetilde{D}_{(M,T)} = A'_P - 0.1351M^{2/3} + 0.003M - \frac{\tau + 10454}{RT}$$

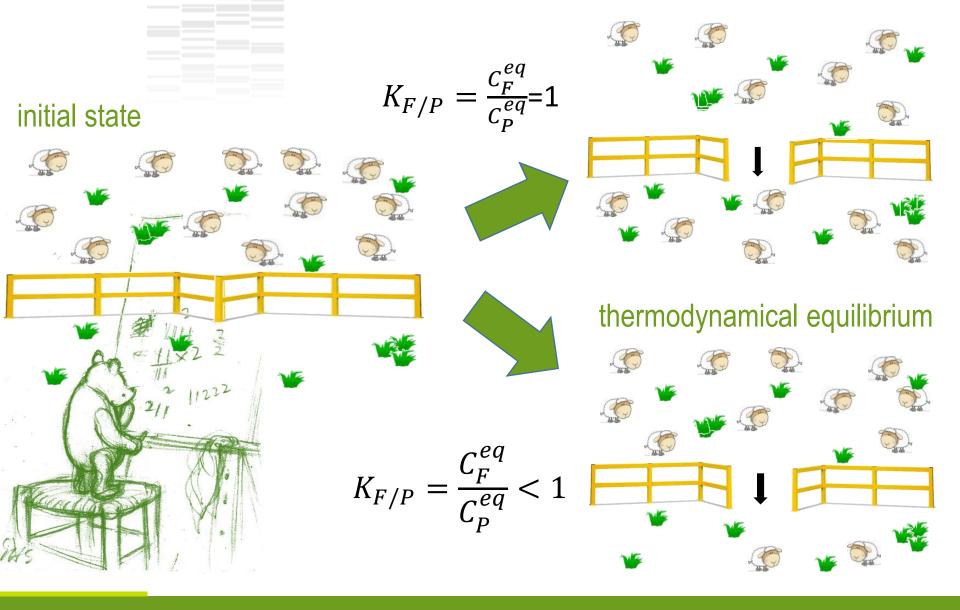
Polymer τ (**K**) LDPE,LLDPE 11 **HDPE** 14 1565 PP (homo and 13 1565 random) PP (rubber) 11 **PS HIPS** 1565 PET 6 **PBT** 1565 PEN 5 1565 PA **PVC**

SAFETY MARGIN

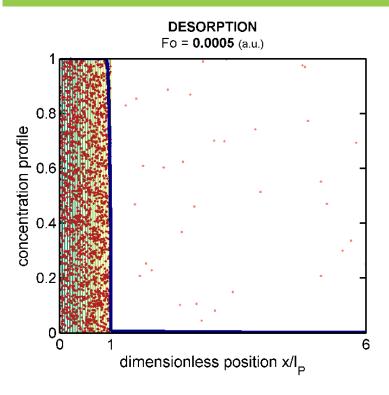


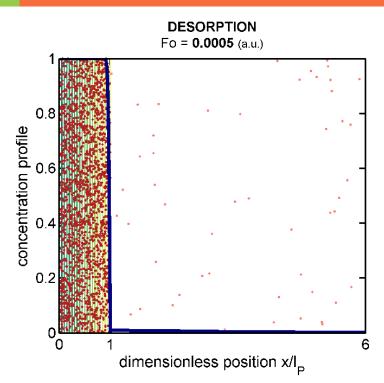
ROBUSTNESS OF THE PIRINGER EQUATION

RUBBER POLYMERS (T>Tg)


- Tg~0°C (PP)
- Tg~50°C (PA)

Crit. Rev. Food Sci. Nut. 2015 (Fang & Vitrac) http://www.tandfonline.com/doi/full/10.1080/10408398.201 3.849654


INTUITIVE DEFINITION OF PARTITION COEFFICIENTS

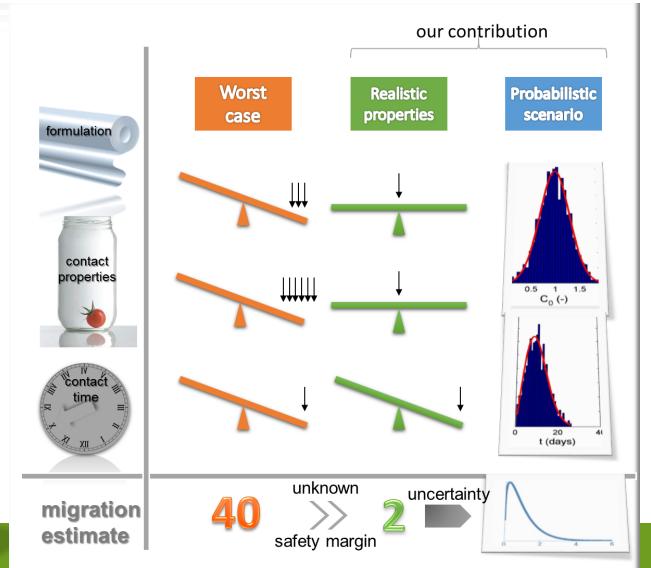


EFFECT OF PARTITION COEFFICIENT ON MIGRATION

50 times for chemical affinity for P 50 times for chemical affinity for F

$$K_{i,F/P} = rac{C_{i,F}^{eq}}{C_{i,P}^{eq}} = rac{1}{1 - crystallinity} rac{oldsymbol{\gamma_{i,P}^{v}}_{amorphous}}{oldsymbol{\gamma_{i,F}^{v}}}$$

MIGRATION MODELING AUTHORIZED IN EU, US, China


At each stage of manufacture, supporting documentation, substantiating the declaration of compliance, should be kept available for the enforcement authorities. Such demonstration of compliance may be based on migration testing. As migration testing is complex, costly and time consuming it should be admissible that compliance can be demonstrated also by calculations, including modelling, other analysis, and scientific evidence or reasoning if these render results which are at least as severe as the migration testing. Test results should be regarded as valid as long as formulations and processing conditions remain constant as part of a quality assurance system.

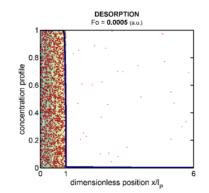
To screen for specific migration the migration potential can be calculated based on the residual content of the substance in the material or article applying generally recognised diffusion models based on scientific evidence that are constructed such as to overestimate real migration.

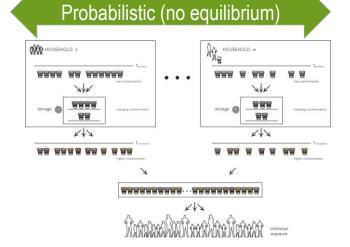
HOW TO OVERESTIMATE MIGRATION

MODELING CAN DEMONSTRATE COMPLIANCE BUT NOT NON-COMPLIANCE

MIGRATION MODELING

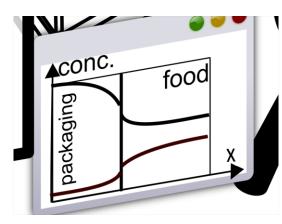
STATE OF THE ART (from lab to industry, from lab to food safety agencies)

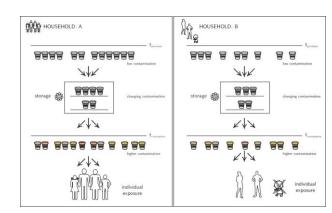

properties

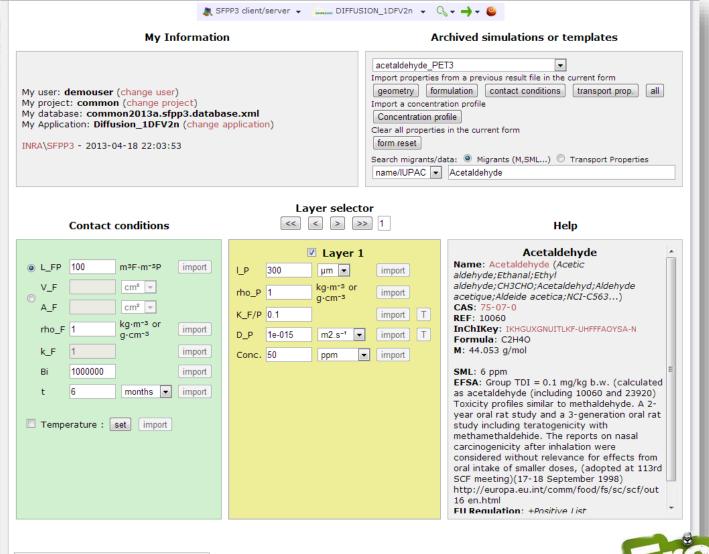

migration

exposure

Probabilistic (equilibrium)






Free energy perturbation

$$\exp\left(-\frac{F_1 - F_0}{k_B T}\right)$$
$$= \left\langle \exp\left(-\frac{U_1 - U_0}{k_B T}\right) \right\rangle$$

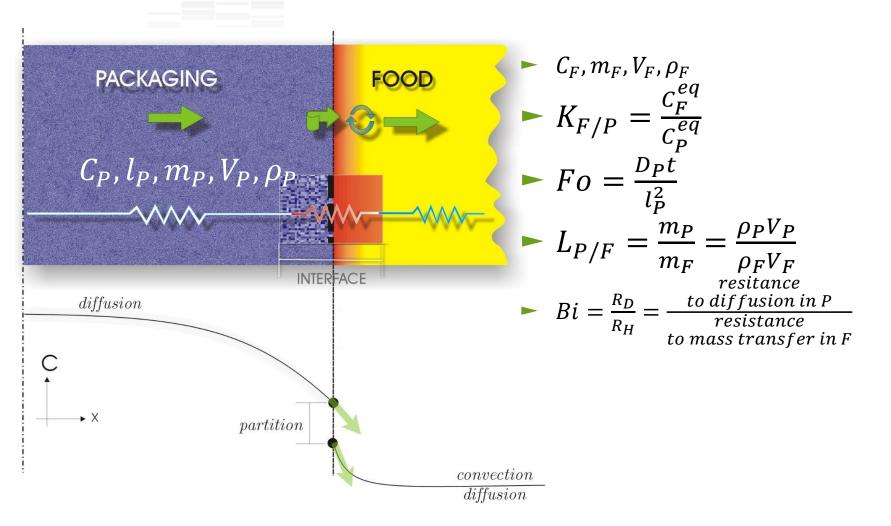
ALL SOFTWARE ARE BUILT ON SIMILAR ASSUMPTIONS

Acceptable threshold or specific migration limit 6 ppm



New trends: OPEN-SOURCE codes

https://github.com/ovitrac/FMECAengine



DIMENSIONLESS FORMULATION

MONOLAYER / DIFFUSION + SORPTION

MASS BALANCE

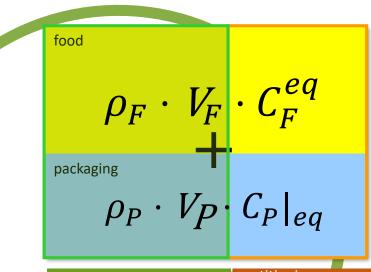
FROM TOTAL MIGRATION TO PARTITION CONTROLLED MIGRATION

packaging

Intial state

$$\rho_P \cdot V_P \cdot C_P^{t=0}$$

SI=kg⋅m⁻³

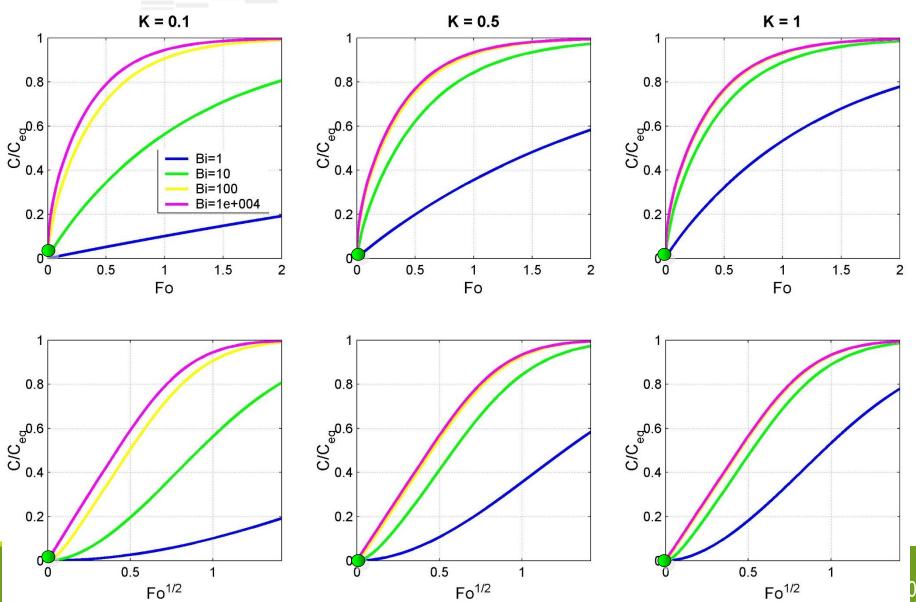

food

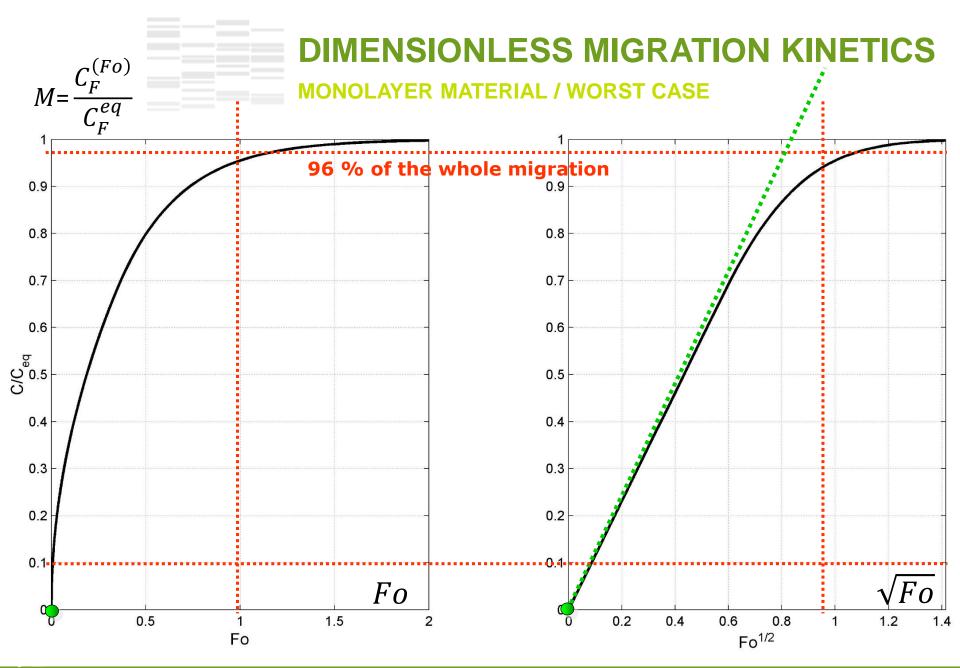
SI=m³

SI=kg⋅kg⁻¹

Equilibrium state

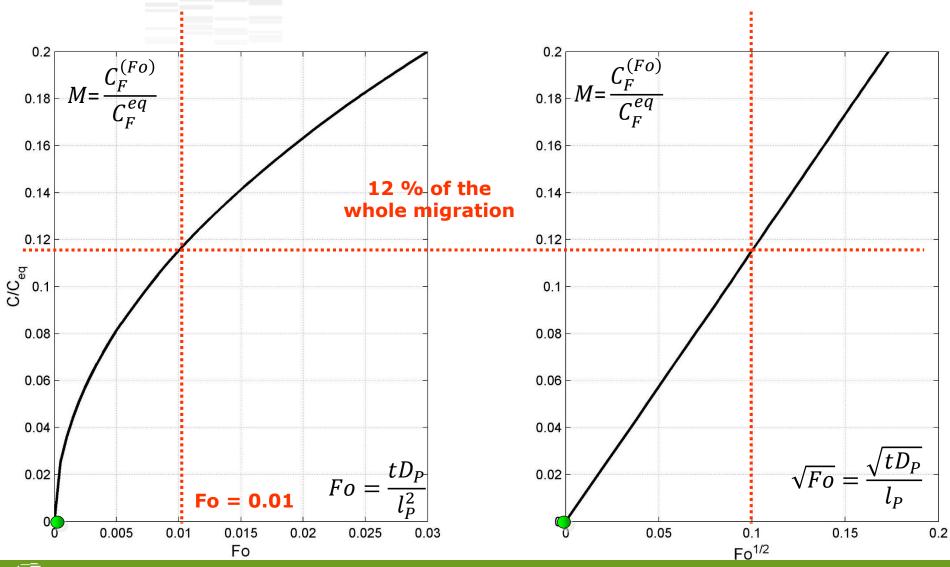
$$C_F^{eq} = \frac{1}{\frac{1}{L_{P/F}} + \frac{1}{K_{F/P}}} C_P^{t=0}$$


geometry effect
$$L_{P/F} = rac{
ho_P V_P}{
ho_F V_F}$$


$$K_{F/P} = \frac{C_F^{eq}}{C_P^{eq}}$$

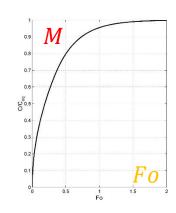
DIMENSIONLESS MIGRATION KINETICS

MONOLAYER MATERIAL



DIMENSIONLESS MIGRATION KINETICS

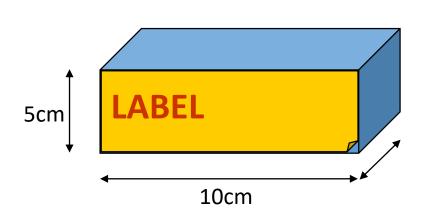
MONOLAYER MATERIAL


RULES OF THUMB FOR WORST CASE SCENARIOS

MONOLAYER MATERIAL

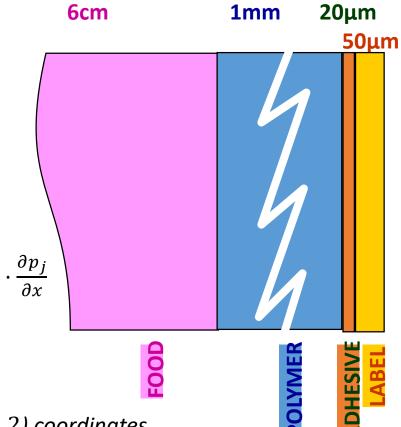
$M = \frac{C_F^{(Fo)}}{C_F^{eq}}$ Dimension-less migration (migration ratio)	$Fo = \frac{tD_P}{l_P^2}$ Dimension-less time	
≈ 100%	1	
≈ 50%	0.2	
≈ 10%	0.01	

Time to reach a given migration ratio: $t = Fo \frac{l_P^2}{D_P}$


Concentration in food at time t: $C_F(t) = M(Fo) \cdot C_F^{eq} = M(Fo) \cdot \frac{K \cdot L}{K + L} \cdot C_P^{t=0}$

MODELING EXISTS ALSO FOR

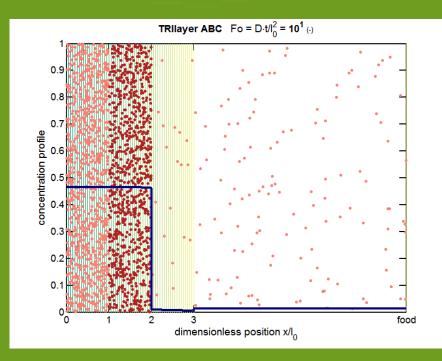
MULTILAYERS
ARBITRARY COORDINATE SYSTELS
CHAINED STEPS

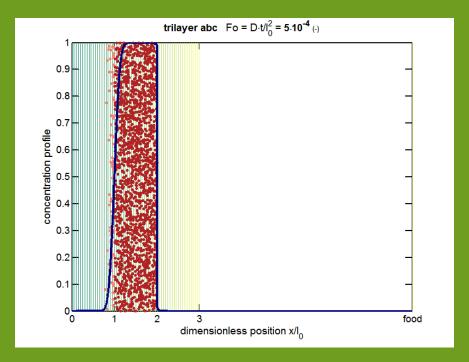

Henry isotherm: p = kC, k=Henry coefficient

Diffusive flux:
$$J_j = -D_j \cdot \rho_j \cdot \frac{\partial c_j}{\partial x} = -\frac{D_j \cdot \rho_j}{k_j} \cdot \frac{\partial p_j}{\partial x} = -\alpha_j \cdot \frac{\partial p_j}{\partial x}$$

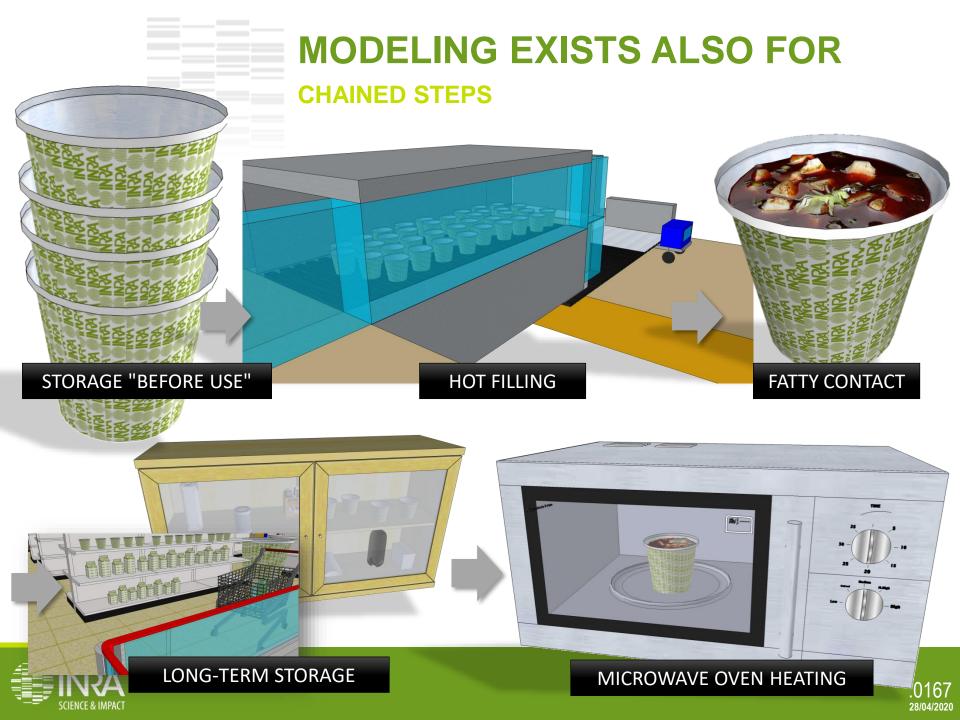
Transport equation: $\delta_j \cdot \frac{\partial p_j}{\partial t} = \frac{1}{x^m} \frac{\partial}{\partial x} \left(x^m \cdot \alpha_j \cdot \frac{\partial p_j}{\partial x} \right)$

$$\alpha_j = \frac{D_j \cdot \rho_j}{k_i} = D_j \cdot \delta_j$$

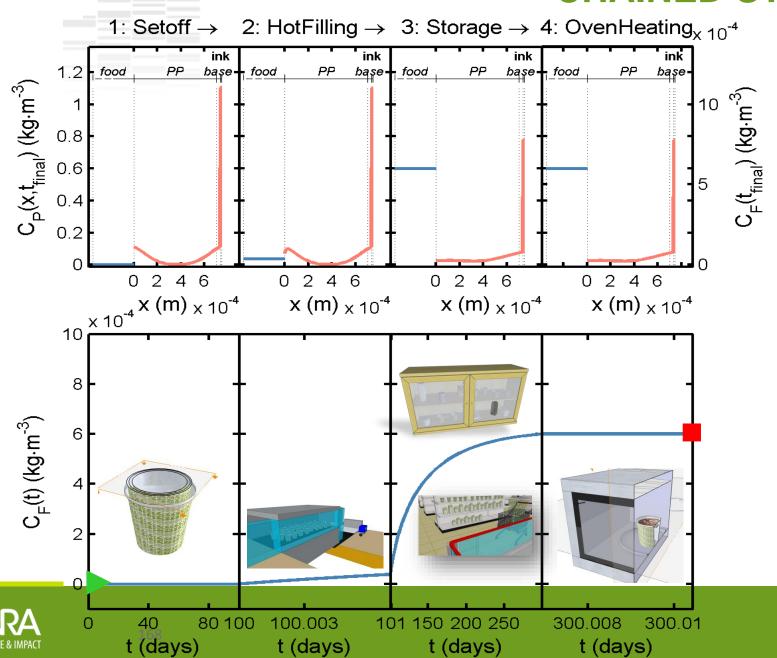

cartesian (m=0), cylindrical ((m=1), spherical (m=2) coordinates


SIMULATION OF MULTILAYER MATERIALS

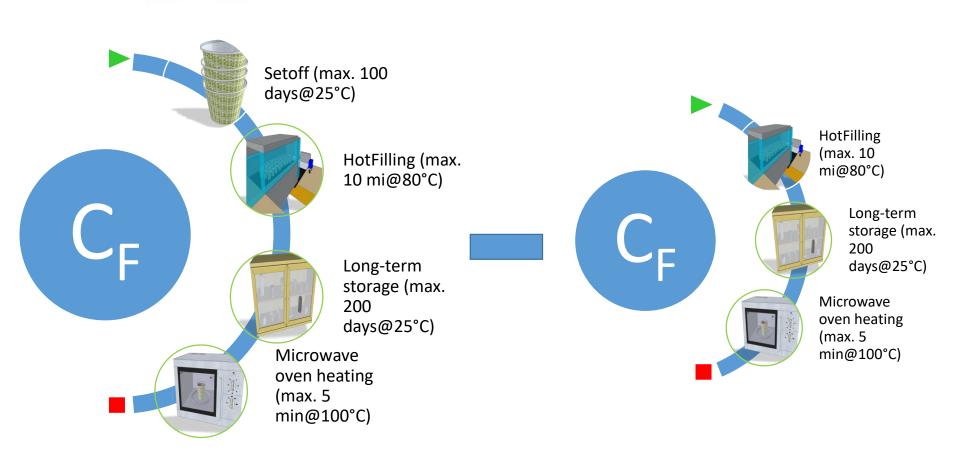
Functional barrier = barrier to diffusion + sorption


prop	Layer 3	Layer 2	Layer 1	Food
C _o	0	1	0	0
I/I _o	1	1	1	100
D/D ₀	1	1	0.1	104
k/k ₀	1	50	1	1

Idem + low chemical affinity for the food



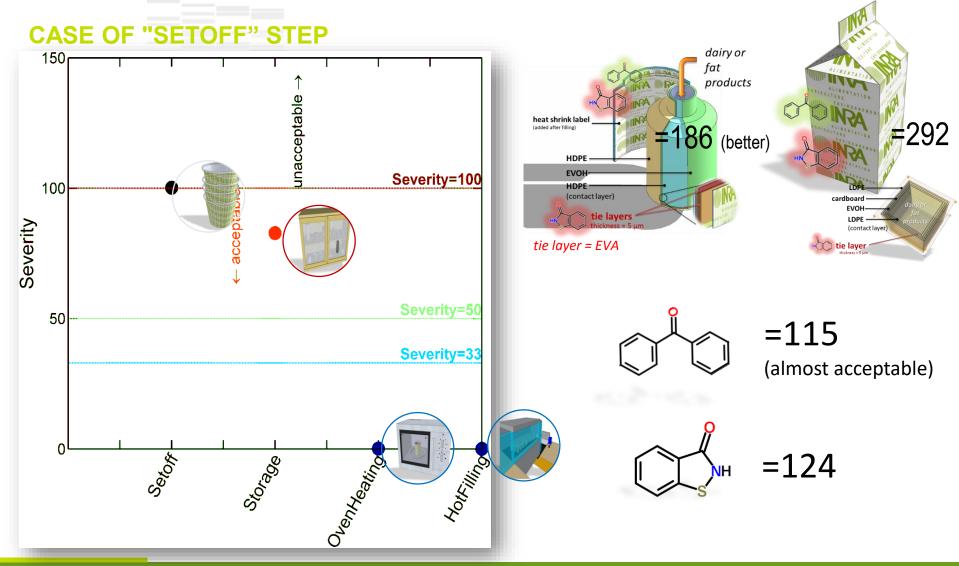
prop	Layer 3	Layer 2	Layer 1	Food
C ₀	0	1	0	0
I/I ₀	1	1	1	100
D/D ₀	1	1	0.1	104
k/k ₀	1	50	1	20



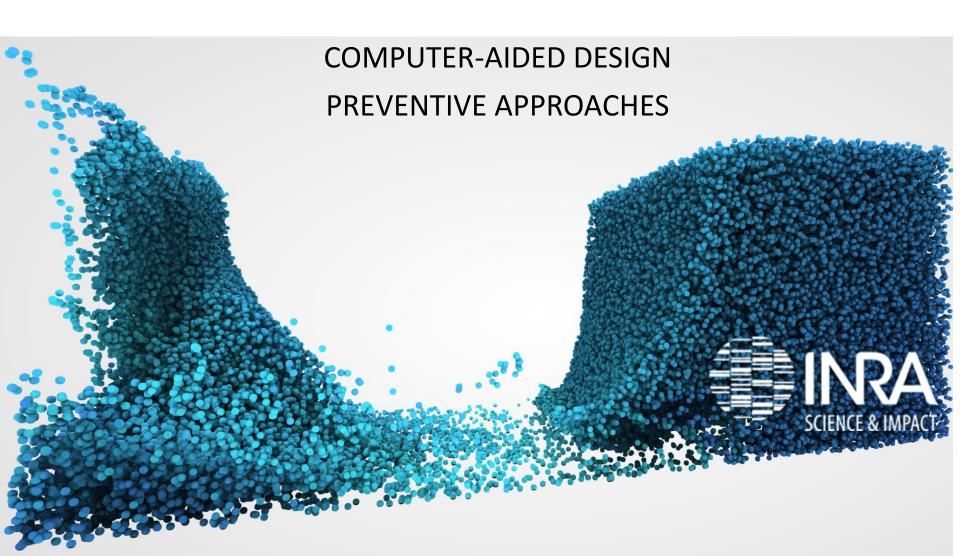
CHAINED STEPS

ASSESSING THE SEVERITY OF A SINGLE STEP

CASE OF "SETOFF" STEP

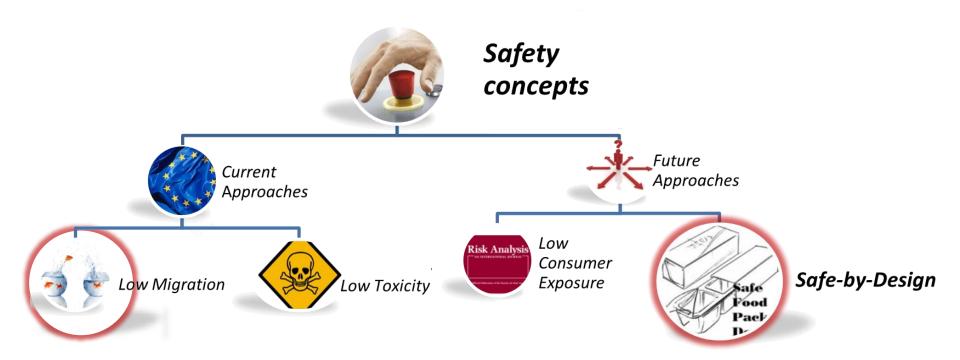


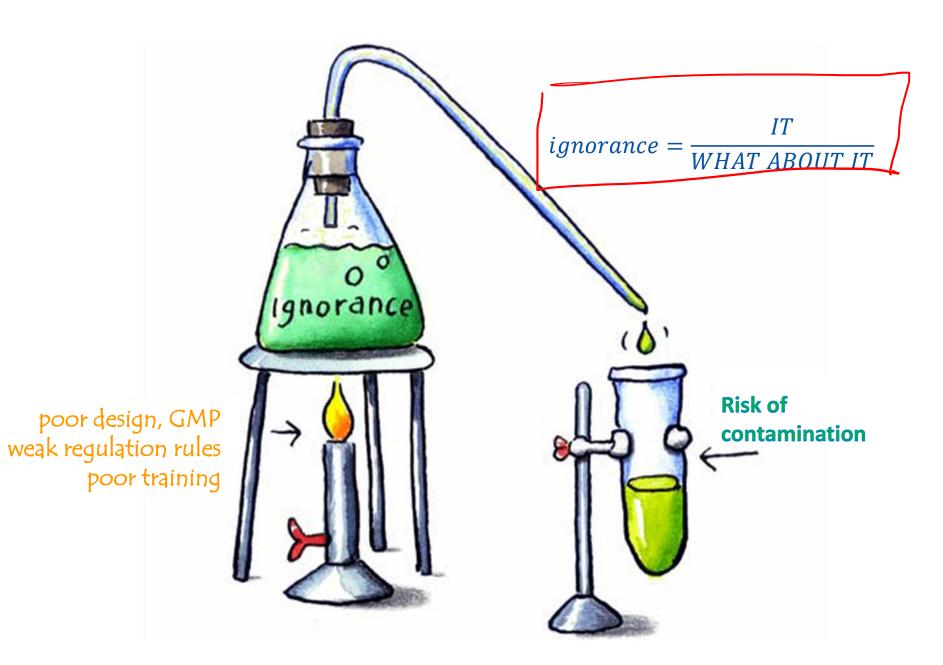
Full methodology described in *AIChE J.* 2013, **59**(4), 1183-1212


Severity $(\hat{C}_F(\text{step }i)) = f \left| \max_{C_{F_M}} \left| \underbrace{C_{F_M}}_{1 \to 2 \to \cdots \to M} - C_{F_M} \right|_{1 \to 2 \to \cdots \to M/i}}_{comparison \ with \ step \ i \ removed}, C_{F_i} \right|_{i}$

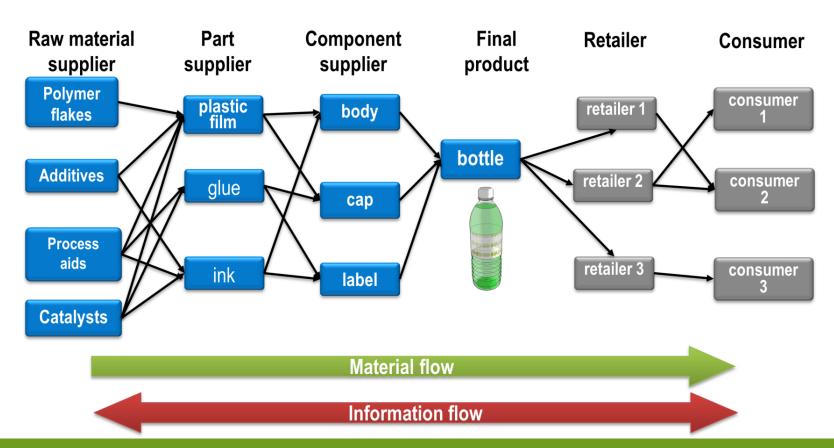
COMPARING THE SEVERITY OF A SEVERAL STEPS, PACKAGING DESIGNS, SUBSTANCES...

CONCLUSIONS



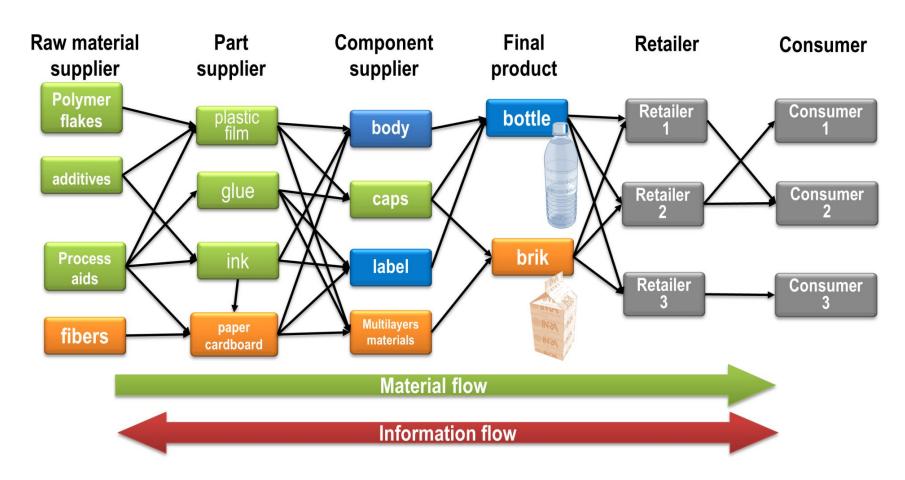

TOWARDS NEW CONCEPTS

PREVENTIVE APPROACHES OF FOOD SAFETY


HUMAN RISK

TOWARDS NEW CONCEPTS

DEVELOPING COOPERATION BETWEEN STAKEHOLDERS



TOWARDS NEW CONCEPTS

DEVELOPING COOPERATION BETWEEN STAKEHOLDERS

MAIN STEPS TO REVIEW

follow each component and

verifiable and auditable

frequency of update of

design is modified,...

information: regular, when a

change occur, only when the

materials

information

	Safe Food Pack Design
Lyon 1 LNE	FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE

photoinitiators

other residues

solvents

monomers, catalysts,

weight contaminants

adhesive

reservoir of high

contaminants

Materials acting as

molecular weight of

PP. LDPE

paper and board

ink

FMECA « milk for infants stored in a brick »

	Formulation	Design	Process	Informations	Mechanisms
hase					
P	Formulation	design	Process	Informations	Described mechanisms
Inventaire	 monomers (plastics, adhesives) catalysts antioxidants lubricants biocides (cardboard, ink) mineral oil (cardboard) solvents photoinitiators other residus (NIAS) 	two components: • brick body (4 materials, 5 layers) • cap (two materials incl. the sealing system) six materials • LDPE, PP (cap) • aluminum foil • cardboard (origin) • « ink » • « adhesives »	 production, storage, assembly of materials assembly and storage of components printing (printing technology, curing/drying) storage of empty packaging aseptic packaging filling (temperature, pretreatment) storage and retailing of the bricks filled with milk conditions of use or storage by the consumer/end-user: chilled, ambient, oven heating? Consumption-type (bottle feed with direct contact between the mouth and the neck) 	 identity and nature of materials in assemblies formulation of materials (substances specifically regulated or not) test conditions used to evaluate the risk of contamination conditions of preparation, packaging filling, storage, consumption of packaged food communication of revisions and modifications in la formulation, design, process and in the final use 	 diffusion across layers set-off cross-contamination between materials and with the storage ambience effects of poor drying and curing on printing inks
	 Highly concentrated antioxidants, lubricants, biocides mineral oils, 	Barrier material aluminum foil Materials acting as reservoir of low molecular	steps associated to long-time contact storage of materials storage of components	 non-documented or missing information accessible information documented information, which 	mass transfer, which can be evaluated rapidly from calculations: from, trough LDPE, PP layers

storage of finished products

steps which may lead to cross-

assembling / laminating

steps associated to high

aseptic filling

oven heating

temperatures

contamination

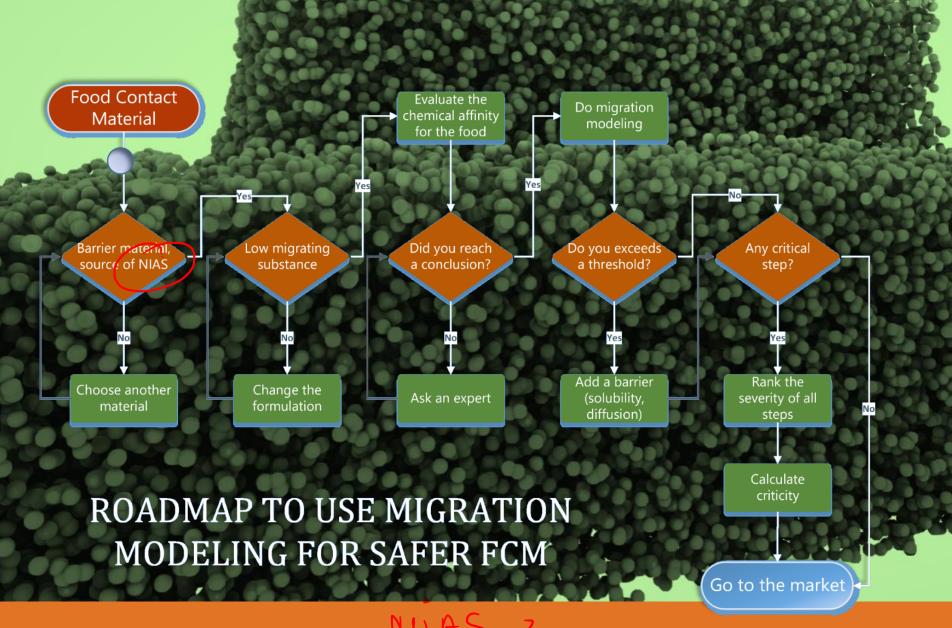
storage

printing

Hiérarchisatior

178

mass transfer, which can be


mass transfer, which require

a depth expertise: cross-

contamination, aging

tested experimentally in a

simple manner: set-off

