

Who we are? What are we doing?

Olivier Vitrac, olivier.vitrac@agroparistech.fr, senior scientist at INRAE (https://www.inrae.fr/en)

Phuong-Mai Nguyen, phuong-mai.nguyen@lne.fr, research engineer at LNE (https://www.lne.fr/en)

> Hosting academic institutes

INRAE

National Research Institute for Agriculture, Food and the Environment (INRAE)

Staff: 12,000 – 200 laboratories - > 1000 PhD students

https://www.inrae.fr/en

AgroParisTech

National Research Institute for Agriculture, Food and the Environment (INRAE)

Staff: 833 – 20 laboratories, 275 PhD students – 18,000 alumni

https://www.agroparistech.fr

UMR 0782

Joint Research Unit between INRAE and AgroParisTech – founding members of University Paris-Saclay

https://www6.versailles-grignon.inrae.fr/umr-sayfood

> SayFood group modeling and computational engineering research axis: Concurrent multiscale modeling

- Zoom in on details down to molecules within the same simulation (food, packaging)
- Breakthrough approaches: integration of chemical and structural information, imagebased modeling, chemical reactions.
- Public-private partnership

> a common laboratory between LNE and UMR SayFood UMT ACTIA 22.07 SAFEMAT « Safe Materials for Food Contact »

- accredited by the French ministry of Agriculture and Food (since 2017)
- Competent organization for EFSA (for both LNE and INRAE) on food contact materials
- LNE = national reference laboratory for food contact materials
- Complementarity of means (computation, analytical chemistry), two groups of SayFood involved
- 24 persons (10 full-time eq.)
- Administrative coordinator Jean-Mario Julien (LNE)
- Scientific coordinator Olivier Vitrac (INRAE)

> LNE: MEASUREMENTS AND STANDARDS

8 sites

France (Paris, Trappes, Saint-Denis, Nîmes, Saint-Etienne, Poitiers)
USA (Washington DC)
China (Hong Kong)

Resources

- **✓** 750 staff
- ✓ 55,000 m² of laboratory space
- ✓ Extensive network of partners
- **√**77.2 M€ revenue including 55,6 M€ sales
- ✓25 M€ investment over last five years
- ✓ 25% of budget allocated to R&D

> LNE: EXTENSIVE SCIENTIFIC AND TECHNOLOGICAL EXPERTISE

Mass spectroscopy high resolution

Spectroscopies NMR ¹H, FTIR-ATR, Fluo.

Molecular modeling
Thermodynamic
characterization
GC-MS 2D
Chemical imaging (UV, RAMAN)
Mixer

NMR ¹H

> 3 AXIS R&D (food industry, packaging) PREDICT, MEASURE, DISSEMINATE & COMMUNICATE

Consolidation and validation of knowledge on MOLECULAR PHENOMENA, contamination pathways, barrier properties, means of controlling them...

Develop ad-hoc **METROLOGY** of thermodynamic and transport properties, high throughput **ANALYTICAL CHEMISTRY**, ad-hoc test benches (flow, aging)

DISSEMINATION to the industry of tools, safe design concepts of substances, materials, packaging

Can we make it

OUR STRATEGY

High TRL

- Services and training for food industry and distributors (LNE)
- ✓ H2020 program (ex. MyPack)
- ✓ ERASMUS+ program (e.g. FITNess)
- Collaboration agreement with the chemical industry
- ✓ Methodological transfer to related sectors (cosmetics, etc.)
- Synthesis works (in progress)
- ✓ Communications (MATBIM, ACS...)

Intermediate TRL

- ✓ Partnership research with CIFRE theses
- ✓ ANR FoodSafeBio Pack
- Calculation platform, database
- ✓ Interactions with other industrial technical centers (IPC, CTCPA) z

Low TRL

- ✓ Theses on own funds (chemometrics, life cycle)
- ✓ Integration for part in CIFRE theses
- ✓ Collaboration with Fraunhofer, FDA
- ✓ Formalization of ASEM (Analysis of Systems at the Molecular Scale) concepts

TRL 1

> New 5 year project: Unit SAFEMAT 2.0 renewal period 2022-2026

2.0

Public mission

Reuse

Support the evolution of **European regulations +** AGEC decrees

pas de contribution

Make the product safe and ensure the performance of the packaging

> 5-year project built around 3 R&D axis (TRL 1-7)

AXIS 1
FOOD GRADE
RECYCLATES
(recognized)

AXIS 2

AGING OF

RECYCLED MATERIALS,

REUSED, REEMPLOYED,

COMPOSTABLE

(to be built)

AXIS 3
ENGINEERING
INTEGRATING THE COUPLE
PACKAGING-PRODUCT

(to federate)

T3. Direct/indirect

characterization of

ores/sources

T1. Production

of reference

materials

Characterization of

functional barriers

materials and

T5. Multiscale modeling / validation

T4. Thermodynamic

description of mass

transfer

Position (micrometers)

Chemical imaging (Raman) on recycled Craft paper (cut)

> Location of mineral oils in the thickness of the packaging

> > -6650

Position (micrometers)

Zone rouge = Forte quantité d'aromatiques

osition (micrometers)=-6627.0 µm,-2793 µm, point 🐗

-6600

3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 Raman shift (cm-1)

> T6. Risk assessment optimization

Position (micrometers)

and performance

> Chemical imaging – Raman spectroscopy on paper

> Thermodynamic measurements (e.g. 25 µm thick - PET)

Automatic microbalance

> FUNCTIONAL BARRIERS

Polymer with high cohesive energy and dense, and recyclable: EVOH... Plasma treatments (SiOx), other technologies (MFC)

monolayer

with barrier to diffusion

> Revisiting the principles of safety assessment

Looking for viable strategies

- Traceability of sourcing, managing crosscontamination during collection, sorting and recycling
- Risk assessment and management of unknown chemicals (NIAS) via consumer exposure
- Unknown acceptable thresholds (acute toxicity, endocrine disruptors, cocktail effects)
- The aging of materials needs to be considered
- Functional barrier? virgin/recycled/decontaminated? which solution? How to evaluate them? Which service life?
- **Evaluating migration / exposure** below the detection limit
- Migration modeling is the only viable approach but which contamination level to consider?

> BEYOND FOOD CONTACT

The EU regulation (EC) 1223/2009 of cosmetic products refers to the framework regulation (EC) 1935/2004 of food contact materials (FCM) to manage the risk of contamination of cosmetic contact materials (CCM)

> Thermodynamic measurements (e.g. 25 µm thick - PET)

Automatic microbalance

The challenge of NIAS

Propagating uncertainty with the risk that no decision can be reached

 $Severity(X) = 100 \times$

$$\max\left(\frac{\widehat{C_F^A}}{\widehat{T_A}}, \frac{\widehat{C_F^B}}{\widehat{T_B}}, \frac{\widehat{C_F^C}}{\widehat{T_C}}, \frac{\widehat{C_F^D}}{\widehat{T_D}}\right)$$

Migration modeling and computational engineering

OUR WAY OUT

Migration modeling and computational engineering **OUR WAY OUT** Spectral density of $\frac{1}{\pi} \frac{\partial}{\partial t} (\| \mathbf{x}_{CM}(t) - \mathbf{x}_{CM}(0) \|^2)$, denoted $S_{CM}(f)$

f (ps⁻¹)

> Migration modeling is well accepted in the US, Europe and China

Revisions and to extensions to non-plastic materials are pending

US guidance

Methodology for
Estimating the
Migration of
Additives and
Impurities from
Polymeric Materials

Europe guidance

> The five principles of migration modeling

The first principle ("conservatism") is that modeling and related calculations should overestimate the real migration or contamination.

■ The second principle ("reliability") implies that the foreseen mass transfer pathways and substances obey well-described mechanisms, accepted conditions (e.g., uniform distribution), and proper implementation in software.

■ The third principle ("consistency") is that inputs in the model are known or guessed in a way that fulfills the requirements of the first principle.

■ The fourth principle ("parsimony") states that sophisticated and refined scenarios should be considered only when simpler ones cannot demonstrate compliance or safety.

■ The fifth and final principle ("proportionality") is that non-compliance cannot be demonstrated by calculation.

> Parsimony vs. sophistication

During the last decade migration modeling became high throughput, multiscale and connected to chemometric approaches

What is the goal?

The art of migration modeling consists in building a sequence of scenarios so that the last scenario provides a value lower than the threshold of concern while being large than the real concentration (unknown).

Tier index estimated concentration $\frac{C_F^{\text{tier 1}}}{C_F^{\text{tier 2}}} > \frac{C_F^{\text{tier 3}}}{C_F^{\text{tier 4}}} > \frac{C_F^{\text{tier 5}}}{C_F^{\text{tier 6}}} > \frac{C_F^{\text{tier 6}}}{C_F^{\text{tier 6}}}$ in food $C_F^{tier\ 1}$ Threshold Compliance cannot be Compliance can demonstrated: use a of concern: be demonstrated higher tier or test C_{thesh} $C_{thresh} > C_F^{tier}$ experimentally (e.g., SML) compliance More knowledge, more sophistication Yan Zhu, Phuong-Mai Nguyen, Olivier Vitrac, Risk Assessment of Migration From Packaging Materials Into Food, Reference Module in Food Science, Elsevier, 2019, https://doi.org/10.1016/B978-0-08-100596-5.22501-8

Multiscale modeling

How to manage uncertainty?

Uncertainty VS ignorance

- "scientia" (science) vs "opinio" (belief)
- Conventional modeling assumes complete knowledge and epistemologic transformation of information into knowledge.
- How to code "vagueness", "skeptism", "error", "doubt"

> Probabilistic modeling

Probabilistic modeling

- ► Part of best practices
- "Mandatory" for risk assessment
- Uncertainty ≠ variability, it can be reduced by additional knowledge or model details.
- Monte-Carlo sampling can be avoided in several situations to reach almost real time simulation.

$$f_{ar{v}^*}\left(v
ight) = \sum_{k=1}^p f_{Fo}\left(ar{v}^{*\,-1}ig|_{Fo\in Y_k}\left(v
ight)
ight) \left|rac{d}{dv}ar{v}^{*\,-1}ig|_{Fo\in Y_k}\left(v
ight)
ight|^{-1}$$

E.g., monotonic model $\frac{C_F}{C_F^{eq}}$ 0.9 8.0 0.7 $\bar{U}^*_{(F_0,F_{0*})}$ 0.3 $\overline{Fo} = 0.5, 1, 1.5, 2$ b. 0.2 0.1 pdf $Fo^*(s_D = 0.2)$

O. Vitrac and M. Hayert, Aiche Journal 2005, 51, 1080-1095.

Styrene from yoghurt pots: an example of forecast

$$p_{r} C \leq x_{product \, scale} = f \begin{bmatrix} ext{food, packaging, migrants} \\ ext{storage cond., uncertainty} \end{bmatrix}$$

6122 Households 221,190 Purchases 1,930,257 Purchased units

2.5

Fo

0.5 1 1.5 2

0.2

 $s_{D} = 0.05$

 $s_{D} = 0.6$

0.5 1 1.5 2

Fo

0.2

0.5 1 1.5 2 2.5 3 3.5

Fo

high consumers (95th percentile, 20 households)

2.5 3 3.5

FUT FUTF

FΗ2

Coupling: temperature, flow Example: redesign of PET bottle for alcoholic beverages (optimized shape, recycled content, reduced weight, improved shell-life)

3D prototype printed the same day

Market demand, new food products

New regulations (e.g., ban of materials or substances)
Life cycle analysis considerations
First solution from known problem-solving tools (TRIZ, Six Sigma approach, etc.)
Diagnostic from root cause analysis, seek of preventive actions

Computer-aided drafting

FOOD-ORIENTED, MEDIUM IN CONTACT

PACKAGING-ORIENTED, APPLICATION-ORIENTED

[E]VALUTION
MASS TRANSFER

[D]ECISION
COMPARISONWITH ACCEPTABLE THRESHOLDS

CONSTRAINTS AND MULTIOBJECTIVE OPTIMIZATION

Deterministic Modeling

Probabilistic

Modeling

full 3D

Feasible solutions
(optimal or Pareto-optimal)

safety

nvironmental

Our research

Rapid prototyping

Minimized waste, migration risk, optimized shelf-life, optimized process and supply chain Computer-aided engineering (mechanical resistance) and manufacturing (extrusion-blowing) Additional validation (e.g., consumer acceptance)

Global environmental footprint

Safe-by-design and eco-design approaches

Interval

Algebra

updated polymer, material, composition, geometry, conditions of use

3D printing, augmented-reality

> Integrated engineering

Zhu, Y., Guillemat, B., et Vitrac, O. (2019). Rational Design of Packaging: Toward Safer and Ecodesigned Food Packaging Systems. *Frontiers in Chemistry*, 7(349).

Three months online curriculum on packaging design https://fitness.agroparistech.fr/

BONNE PRATIQUE